NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 63 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sarah E. Robertson; Jon A. Steingrimsson; Issa J. Dahabreh – Evaluation Review, 2024
When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude…
Descriptors: Randomized Controlled Trials, Generalization, Inferences, Hierarchical Linear Modeling
Yanli Xie – ProQuest LLC, 2022
The purpose of this dissertation is to develop principles and strategies for and identify limitations of multisite cluster randomized trials in the context of partially and fully nested designs. In the first study, I develop principles of estimation, sampling variability, and inference for studies that leverage multisite designs within the context…
Descriptors: Randomized Controlled Trials, Research Design, Computation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Sung, Jaeyun; Lee, Sunbok – International Journal of Assessment Tools in Education, 2021
Conventional estimators for indirect effects using a difference in coefficients and product of coefficients produce the same results for continuous outcomes. However, for binary outcomes, the difference in coefficient estimator systematically underestimates the indirect effects because of a scaling problem. One solution is to standardize…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Scaling
Anqi Zhao; Peng Ding; Tirthankar Dasgupta – Grantee Submission, 2018
Given two 2-level factors of interest, a 2[superscript 2] split-plot design (a) takes each of the 2 [superscript 2] = 4 possible factorial combinations as a treatment, (b) identifies one factor as `whole-plot,' (c) divides the experimental units into blocks, and (d) assigns the treatments in such away that all units within the same block receive…
Descriptors: Statistical Inference, Computation, Statistical Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Köhler, Carmen; Robitzsch, Alexander; Hartig, Johannes – Journal of Educational and Behavioral Statistics, 2020
Testing whether items fit the assumptions of an item response theory model is an important step in evaluating a test. In the literature, numerous item fit statistics exist, many of which show severe limitations. The current study investigates the root mean squared deviation (RMSD) item fit statistic, which is used for evaluating item fit in…
Descriptors: Test Items, Goodness of Fit, Statistics, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Gurkan, Gulsah; Benjamini, Yoav; Braun, Henry – Large-scale Assessments in Education, 2021
Employing nested sequences of models is a common practice when exploring the extent to which one set of variables mediates the impact of another set. Such an analysis in the context of logistic regression models confronts two challenges: (1) direct comparisons of coefficients across models are generally biased due to the changes in scale that…
Descriptors: Statistical Inference, Regression (Statistics), Adults, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Hayden, Robert W. – Journal of Statistics Education, 2019
Recent years have seen increasing interest in incorporating resampling methods into introductory statistics courses and the high school mathematics curriculum. While the use of permutation tests for data from experiments is a step forward, the use of simple bootstrap methods for sampling situations is more problematical. This article demonstrates…
Descriptors: Sampling, Statistical Inference, Introductory Courses, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D. – Sociological Methods & Research, 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial…
Descriptors: Statistical Inference, Bias, Recruitment, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Walters, Glenn D. – International Journal of Social Research Methodology, 2019
Identifying mediators in variable chains as part of a causal mediation analysis can shed light on issues of causation, assessment, and intervention. However, coefficients and effect sizes in a causal mediation analysis are nearly always small. This can lead those less familiar with the approach to reject the results of causal mediation analysis.…
Descriptors: Effect Size, Statistical Analysis, Sampling, Statistical Inference
Opper, Isaac M. – RAND Corporation, 2020
Researchers often include covariates when they analyze the results of randomized controlled trials (RCTs), valuing the increased precision of the estimates over the potential of inducing small-sample bias when doing so. In this paper, we develop a sufficient condition which ensures that the inclusion of covariates does not induce small-sample bias…
Descriptors: Artificial Intelligence, Man Machine Systems, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5