Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 19 |
Descriptor
Source
Author
Sinharay, Sandip | 3 |
Cervone, Daniel | 1 |
Chan, Wai | 1 |
DeMars, Christine E. | 1 |
Dongho Shin | 1 |
Dorie, Vincent | 1 |
Ernesto Sánchez | 1 |
Francisco Sepúlveda | 1 |
Haiyan Liu | 1 |
Hao Wu | 1 |
Hill, Jennifer | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 12 |
Dissertations/Theses -… | 3 |
Reports - Evaluative | 3 |
Reports - Descriptive | 2 |
Education Level
High Schools | 3 |
Secondary Education | 3 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Ernesto Sánchez; Victor Nozair García-Ríos; Francisco Sepúlveda – Educational Studies in Mathematics, 2024
Sampling distributions are fundamental for statistical inference, yet their abstract nature poses challenges for students. This research investigates the development of high school students' conceptions of sampling distribution through informal significance tests with the aid of digital technology. The study focuses on how technological tools…
Descriptors: High School Students, Concept Formation, Thinking Skills, Skill Development
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Waterbury, Glenn Thomas; DeMars, Christine E. – Journal of Experimental Education, 2019
There is a need for effect sizes that are readily interpretable by a broad audience. One index that might fill this need is [pi], which represents the proportion of scores in one group that exceed the mean of another group. The robustness of estimates of [pi] to violations of normality had not been explored. Using simulated data, three estimates…
Descriptors: Effect Size, Robustness (Statistics), Simulation, Research Methodology
Dorie, Vincent; Hill, Jennifer; Shalit, Uri; Scott, Marc; Cervone, Daniel – Grantee Submission, 2018
Statisticians have made great progress in creating methods that reduce our reliance on parametric assumptions. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend.…
Descriptors: Statistical Inference, Simulation, Causal Models, Research Methodology
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2018
Wollack, Cohen, and Eckerly suggested the "erasure detection index" (EDI) to detect fraudulent erasures for individual examinees. Wollack and Eckerly extended the EDI to detect fraudulent erasures at the group level. The EDI at the group level was found to be slightly conservative. This article suggests two modifications of the EDI for…
Descriptors: Deception, Identification, Testing Problems, Cheating
Sinharay, Sandip – Grantee Submission, 2017
Wollack, Cohen, and Eckerly (2015) suggested the "erasure detection index" (EDI) to detect fraudulent erasures for individual examinees. Wollack and Eckerly (2017) extended the EDI to detect fraudulent erasures at the group level. The EDI at the group level was found to be slightly conservative. This paper suggests two modifications of…
Descriptors: Deception, Identification, Testing Problems, Cheating
Quinn, Anne – Mathematics Teacher, 2016
While looking for an inexpensive technology package to help students in statistics classes, the author found StatKey, a free Web-based app. Not only is StatKey useful for students' year-end projects, but it is also valuable for helping students learn fundamental content such as the central limit theorem. Using StatKey, students can engage in…
Descriptors: Statistics, Computer Oriented Programs, Technology Uses in Education, Teaching Methods
Jang, Hyesuk – ProQuest LLC, 2014
This study aims to evaluate a multidimensional latent trait model to determine how well the model works in various empirical contexts. Contrary to the assumption of these latent trait models that the traits are normally distributed, situations in which the latent trait is not shaped with a normal distribution may occur (Sass et al, 2008; Woods…
Descriptors: Item Response Theory, Correlation, Multidimensional Scaling, Simulation
Moraveji, Behjat; Jafarian, Koorosh – International Journal of Education and Literacy Studies, 2014
The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…
Descriptors: Mathematics, Computation, Robustness (Statistics), Regression (Statistics)
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2015
Person-fit assessment may help the researcher to obtain additional information regarding the answering behavior of persons. Although several researchers examined person fit, there is a lack of research on person-fit assessment for mixed-format tests. In this article, the lz statistic and the ?2 statistic, both of which have been used for tests…
Descriptors: Test Format, Goodness of Fit, Item Response Theory, Bayesian Statistics
MacDonald, George T. – ProQuest LLC, 2014
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Descriptors: Simulation, Item Response Theory, Models, Test Items
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Previous Page | Next Page »
Pages: 1 | 2