NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 60 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Phillip K. Wood – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The logistic and confined exponential curves are frequently used in studies of growth and learning. These models, which are nonlinear in their parameters, can be estimated using structural equation modeling software. This paper proposes a single combined model, a weighted combination of both models. Mplus, Proc Calis, and lavaan code for the model…
Descriptors: Structural Equation Models, Computation, Computer Software, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Suyoung Kim; Sooyong Lee; Jiwon Kim; Tiffany A. Whittaker – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study aims to address a gap in the social and behavioral sciences literature concerning interaction effects between latent factors in multiple-group analysis. By comparing two approaches for estimating latent interactions within multiple-group analysis frameworks using simulation studies and empirical data, we assess their relative merits.…
Descriptors: Social Science Research, Behavioral Sciences, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Erik-Jan van Kesteren; Daniel L. Oberski – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Structural equation modeling (SEM) is being applied to ever more complex data types and questions, often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers currently need to completely reformulate SEM and its optimization algorithm -- a challenging and time-consuming task. In this paper, we introduce…
Descriptors: Structural Equation Models, Computation, Graphs, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2019
Longitudinal data analysis has received widespread interest throughout educational, behavioral, and social science research, with latent growth curve modeling currently being one of the most popular methods of analysis. Despite the popularity of latent growth curve modeling, limited attention has been directed toward understanding the issues of…
Descriptors: Reliability, Longitudinal Studies, Growth Models, Structural Equation Models
Shi, Dexin; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2020
We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual…
Descriptors: Structural Equation Models, Computation, Maximum Likelihood Statistics, Least Squares Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C. – Educational and Psychological Measurement, 2018
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Descriptors: Error of Measurement, Testing, Scores, Models
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4