NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W. -L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Confidence intervals (CIs) for parameters are usually constructed based on the estimated standard errors. These are known as Wald CIs. This article argues that likelihood-based CIs (CIs based on likelihood ratio statistics) are often preferred to Wald CIs. It shows how the likelihood-based CIs and the Wald CIs for many statistics and psychometric…
Descriptors: Intervals, Structural Equation Models, Simulation, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Krishnakumar, Jaya; Nagar, A. L. – Social Indicators Research, 2008
Recent empirical literature has seen many multidimensional indices emerge as well-being or poverty measures, in particular indices derived from principal components and various latent variable models. Though such indices are being increasingly and widely employed, few studies motivate their use or report the standard errors or confidence intervals…
Descriptors: Intervals, Structural Equation Models, Factor Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Jason; MacKinnon, David P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional "z" test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a…
Descriptors: Intervals, Testing, Predictor Variables, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Biesanz, Jeremy C.; Deeb-Sossa, Natalia; Papadakis, Alison A.; Bollen, Kenneth A.; Curran, Patrick J. – Psychological Methods, 2004
The coding of time in growth curve models has important implications for the interpretation of the resulting model that are sometimes not transparent. The authors develop a general framework that includes predictors of growth curve components to illustrate how parameter estimates and their standard errors are exactly determined as a function of…
Descriptors: Intervals, Structural Equation Models, Computation, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling, 2004
In applications of structural equation modeling, it is often desirable to obtain measures of uncertainty for special functions of model parameters. This article provides a didactic discussion of how a method widely used in applied statistics can be employed for approximate standard error and confidence interval evaluation of such functions. The…
Descriptors: Intervals, Structural Equation Models, Evaluation Methods, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Klein, Andreas G.; Muthen, Bengt O. – Journal of Educational and Behavioral Statistics, 2006
In this article, a heterogeneous latent growth curve model for modeling heterogeneity of growth rates is proposed. The suggested model is an extension of a conventional growth curve model and a complementary tool to mixed growth modeling. It allows the modeling of heterogeneity of growth rates as a continuous function of latent initial status and…
Descriptors: Intervals, Computation, Structural Equation Models, Mathematics Achievement