NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmood Ul Hassan; Frank Miller – Journal of Educational Measurement, 2024
Multidimensional achievement tests are recently gaining more importance in educational and psychological measurements. For example, multidimensional diagnostic tests can help students to determine which particular domain of knowledge they need to improve for better performance. To estimate the characteristics of candidate items (calibration) for…
Descriptors: Multidimensional Scaling, Achievement Tests, Test Items, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Sijia; Luo, Jinwen; Cai, Li – Educational and Psychological Measurement, 2023
Random item effects item response theory (IRT) models, which treat both person and item effects as random, have received much attention for more than a decade. The random item effects approach has several advantages in many practical settings. The present study introduced an explanatory multidimensional random item effects rating scale model. The…
Descriptors: Rating Scales, Item Response Theory, Models, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Harold Doran; Testsuhiro Yamada; Ted Diaz; Emre Gonulates; Vanessa Culver – Journal of Educational Measurement, 2025
Computer adaptive testing (CAT) is an increasingly common mode of test administration offering improved test security, better measurement precision, and the potential for shorter testing experiences. This article presents a new item selection algorithm based on a generalized objective function to support multiple types of testing conditions and…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Qingrong; Cai, Yan; Luo, Fen; Tu, Dongbo – Journal of Educational and Behavioral Statistics, 2023
To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item…
Descriptors: Cognitive Tests, Computer Assisted Testing, Adaptive Testing, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kalelioglu, Filiz; Dogan, Dilek; Gulbahar, Yasemin – Informatics in Education, 2022
This study aims to provide a deeper understanding about the Bebras tasks, which is one of the computational thinking (CT) unplugged activities, in terms of age level, task category, and CT skills. Explanatory sequential mixed method was adopted in the study in order to collect data according to the research questions. The participants of the study…
Descriptors: Foreign Countries, Computation, Thinking Skills, Problem Solving
Peer reviewed Peer reviewed
Blando, John A.; And Others – Journal for Research in Mathematics Education, 1989
Seventh-grade students were tested to uncover arithmetic errors. Answers and intermediate steps were analyzed and models to represent students' behavior were developed. Certain errors were common across students. Others were tied to the format of the test item. Some superficial understandings of mathematical concepts were exposed. (Author/DC)
Descriptors: Algorithms, Arithmetic, Computation, Error Patterns