NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Johannes; Richner, Robin; Riser, Micha – International Journal of Artificial Intelligence in Education, 2023
Autograding short textual answers has become much more feasible due to the rise of NLP and the increased availability of question-answer pairs brought about by a shift to online education. Autograding performance is still inferior to human grading. The statistical and black-box nature of state-of-the-art machine learning models makes them…
Descriptors: Grading, Natural Language Processing, Computer Assisted Testing, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Adnane Ez-zizi; Dagmar Divjak; Petar Milin – Language Learning, 2024
Since its first adoption as a computational model for language learning, evidence has accumulated that Rescorla-Wagner error-correction learning (Rescorla & Wagner, 1972) captures several aspects of language processing. Whereas previous studies have provided general support for the Rescorla-Wagner rule by using it to explain the behavior of…
Descriptors: Error Correction, Second Language Learning, Second Language Instruction, Gender Differences
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Shabnam Behzad – ProQuest LLC, 2024
Second language learners constitute a significant and expanding portion of the global population and there is a growing demand for tools that facilitate language learning and instruction across various levels and in different countries. The development of large language models (LLMs) has brought about a significant impact on the domains of natural…
Descriptors: Artificial Intelligence, Computer Software, Computational Linguistics, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Ping-Yu; Tsao, Nai-Lung – Computer Assisted Language Learning, 2021
In this article, we describe an online English collocation explorer developed to help English L2 learners produce correct and appropriate collocations. Our tool, which is able to visually represent relevant correct/incorrect collocations on a single webpage, was designed based on the notions of collocation clusters and intercollocability proposed…
Descriptors: Second Language Learning, Second Language Instruction, English (Second Language), Error Correction
Peer reviewed Peer reviewed
Direct linkDirect link
Tono, Yukio; Satake, Yoshiho; Miura, Aika – ReCALL, 2014
This study reports on the results of classroom research investigating the effects of corpus use in the process of revising compositions in English as a foreign language. Our primary aim was to investigate the relationship between the information extracted from corpus data and how that information actually helped in revising different types of…
Descriptors: Computational Linguistics, Feedback (Response), Revision (Written Composition), English (Second Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Chukharev-Hudilainen, Evgeny; Saricaoglu, Aysel – Computer Assisted Language Learning, 2016
Expressing causal relations plays a central role in academic writing. While it is important that writing instructors assess and provide feedback on learners' causal discourse, it could be a very time-consuming task. In this respect, automated writing evaluation (AWE) tools may be helpful. However, to date, there have been no AWE tools capable of…
Descriptors: Discourse Analysis, Feedback (Response), Undergraduate Students, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Harbusch, Karin; Cameran, Christel-Joy; Härtel, Johannes – Research-publishing.net, 2014
We present a new feedback strategy implemented in a natural language generation-based e-learning system for German as a second language (L2). Although the system recognizes a large proportion of the grammar errors in learner-produced written sentences, its automatically generated feedback only addresses errors against rules that are relevant at…
Descriptors: German, Second Language Learning, Second Language Instruction, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Amaral, Luiz A.; Meurers, W. Detmar – CALICO Journal, 2009
Error diagnosis in ICALL typically analyzes learner input in an attempt to abstract and identify indicators of the learner's (mis)conceptions of linguistic properties. For written input, this process usually starts with the identification of tokens that will serve as the atomic building blocks of the analysis. In this paper, we discuss the…
Descriptors: Grammar, Computer Assisted Instruction, Identification, Error Analysis (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Granger, Sylviane; Kraif, Olivier; Ponton, Claude; Antoniadis, Georges; Zampa, Virginie – ReCALL, 2007
Learner corpora, electronic collections of spoken or written data from foreign language learners, offer unparalleled access to many hitherto uncovered aspects of learner language, particularly in their error-tagged format. This article aims to demonstrate the role that the learner corpus can play in CALL, particularly when used in conjunction with…
Descriptors: Metalinguistics, Natural Language Processing, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Yu-Chia; Chang, Jason S.; Chen, Hao-Jan; Liou, Hsien-Chin – Computer Assisted Language Learning, 2008
Previous work in the literature reveals that EFL learners were deficient in collocations that are a hallmark of near native fluency in learner's writing. Among different types of collocations, the verb-noun (V-N) one was found to be particularly difficult to master, and learners' first language was also found to heavily influence their collocation…
Descriptors: Sentence Structure, Verbs, Nouns, Foreign Countries