NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Öncel, Püren; Flynn, Lauren E.; Sonia, Allison N.; Barker, Kennis E.; Lindsay, Grace C.; McClure, Caleb M.; McNamara, Danielle S.; Allen, Laura K. – Grantee Submission, 2021
Automated Writing Evaluation systems have been developed to help students improve their writing skills through the automated delivery of both summative and formative feedback. These systems have demonstrated strong potential in a variety of educational contexts; however, they remain limited in their personalization and scope. The purpose of the…
Descriptors: Computer Assisted Instruction, Writing Evaluation, Formative Evaluation, Summative Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dascalu, Mihai; Jacovina, Matthew E.; Soto, Christian M.; Allen, Laura K.; Dai, Jianmin; Guerrero, Tricia A.; McNamara, Danielle S. – Grantee Submission, 2017
iSTART is a web-based reading comprehension tutor. A recent translation of iSTART from English to Spanish has made the system available to a new audience. In this paper, we outline several challenges that arose during the development process, specifically focusing on the algorithms that drive the feedback. Several iSTART activities encourage…
Descriptors: Spanish, Reading Comprehension, Natural Language Processing, Intelligent Tutoring Systems
Stefan Ruseti; Mihai Dascalu; Amy M. Johnson; Renu Balyan; Kristopher J. Kopp; Danielle S. McNamara – Grantee Submission, 2018
This study assesses the extent to which machine learning techniques can be used to predict question quality. An algorithm based on textual complexity indices was previously developed to assess question quality to provide feedback on questions generated by students within iSTART (an intelligent tutoring system that teaches reading strategies). In…
Descriptors: Questioning Techniques, Artificial Intelligence, Networks, Classification
Allen, Laura K.; Snow, Erica L.; McNamara, Danielle S. – Grantee Submission, 2015
This study builds upon previous work aimed at developing a student model of reading comprehension ability within the intelligent tutoring system, iSTART. Currently, the system evaluates students' self-explanation performance using a local, sentence-level algorithm and does not adapt content based on reading ability. The current study leverages…
Descriptors: Reading Comprehension, Reading Skills, Natural Language Processing, Intelligent Tutoring Systems