Publication Date
In 2025 | 3 |
Since 2024 | 11 |
Since 2021 (last 5 years) | 27 |
Since 2016 (last 10 years) | 35 |
Since 2006 (last 20 years) | 66 |
Descriptor
Computer Assisted Testing | 88 |
Computer Software | 88 |
Scoring | 75 |
Foreign Countries | 25 |
Second Language Learning | 22 |
English (Second Language) | 19 |
Educational Technology | 18 |
Language Tests | 18 |
Correlation | 16 |
Evaluation Methods | 16 |
Evaluators | 16 |
More ▼ |
Source
Author
Attali, Yigal | 3 |
Anderson, Paul S. | 2 |
Breyer, F. Jay | 2 |
Bridgeman, Brent | 2 |
Burstein, Jill | 2 |
Denis Dumas | 2 |
Gentile, Claudia | 2 |
Heffernan, Neil | 2 |
Kantor, Robert | 2 |
Lee, Yong-Won | 2 |
O'Neil, Harold F., Jr. | 2 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 2 |
Researchers | 2 |
Policymakers | 1 |
Location
Japan | 3 |
United Kingdom | 3 |
Australia | 2 |
China | 2 |
Europe | 2 |
Iran | 2 |
New York (New York) | 2 |
Arizona | 1 |
Austria | 1 |
Belgium | 1 |
Brazil | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Selcuk Acar; Peter Organisciak; Denis Dumas – Journal of Creative Behavior, 2025
In this three-study investigation, we applied various approaches to score drawings created in response to both Form A and Form B of the Torrance Tests of Creative Thinking-Figural (broadly TTCT-F) as well as the Multi-Trial Creative Ideation task (MTCI). We focused on TTCT-F in Study 1, and utilizing a random forest classifier, we achieved 79% and…
Descriptors: Scoring, Computer Assisted Testing, Models, Correlation
Peter Baldwin; Victoria Yaneva; Kai North; Le An Ha; Yiyun Zhou; Alex J. Mechaber; Brian E. Clauser – Journal of Educational Measurement, 2025
Recent developments in the use of large-language models have led to substantial improvements in the accuracy of content-based automated scoring of free-text responses. The reported accuracy levels suggest that automated systems could have widespread applicability in assessment. However, before they are used in operational testing, other aspects of…
Descriptors: Artificial Intelligence, Scoring, Computational Linguistics, Accuracy
Swapna Haresh Teckwani; Amanda Huee-Ping Wong; Nathasha Vihangi Luke; Ivan Cherh Chiet Low – Advances in Physiology Education, 2024
The advent of artificial intelligence (AI), particularly large language models (LLMs) like ChatGPT and Gemini, has significantly impacted the educational landscape, offering unique opportunities for learning and assessment. In the realm of written assessment grading, traditionally viewed as a laborious and subjective process, this study sought to…
Descriptors: Accuracy, Reliability, Computational Linguistics, Standards
Rebecka Weegar; Peter Idestam-Almquist – International Journal of Artificial Intelligence in Education, 2024
Machine learning methods can be used to reduce the manual workload in exam grading, making it possible for teachers to spend more time on other tasks. However, when it comes to grading exams, fully eliminating manual work is not yet possible even with very accurate automated grading, as any grading mistakes could have significant consequences for…
Descriptors: Grading, Computer Assisted Testing, Introductory Courses, Computer Science Education
Eran Hadas; Arnon Hershkovitz – Journal of Learning Analytics, 2025
Creativity is an imperative skill for today's learners, one that has important contributions to issues of inclusion and equity in education. Therefore, assessing creativity is of major importance in educational contexts. However, scoring creativity based on traditional tools suffers from subjectivity and is heavily time- and labour-consuming. This…
Descriptors: Creativity, Evaluation Methods, Computer Assisted Testing, Artificial Intelligence
Kunal Sareen – Innovations in Education and Teaching International, 2024
This study examines the proficiency of Chat GPT, an AI language model, in answering questions on the Situational Judgement Test (SJT), a widely used assessment tool for evaluating the fundamental competencies of medical graduates in the UK. A total of 252 SJT questions from the "Oxford Assess and Progress: Situational Judgement" Test…
Descriptors: Ethics, Decision Making, Artificial Intelligence, Computer Software
Uto, Masaki; Okano, Masashi – IEEE Transactions on Learning Technologies, 2021
In automated essay scoring (AES), scores are automatically assigned to essays as an alternative to grading by humans. Traditional AES typically relies on handcrafted features, whereas recent studies have proposed AES models based on deep neural networks to obviate the need for feature engineering. Those AES models generally require training on a…
Descriptors: Essays, Scoring, Writing Evaluation, Item Response Theory
Yishen Song; Qianta Zhu; Huaibo Wang; Qinhua Zheng – IEEE Transactions on Learning Technologies, 2024
Manually scoring and revising student essays has long been a time-consuming task for educators. With the rise of natural language processing techniques, automated essay scoring (AES) and automated essay revising (AER) have emerged to alleviate this burden. However, current AES and AER models require large amounts of training data and lack…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Zhang, Mengxue; Heffernan, Neil; Lan, Andrew – International Educational Data Mining Society, 2023
Automated scoring of student responses to open-ended questions, including short-answer questions, has great potential to scale to a large number of responses. Recent approaches for automated scoring rely on supervised learning, i.e., training classifiers or fine-tuning language models on a small number of responses with human-provided score…
Descriptors: Scoring, Computer Assisted Testing, Mathematics Instruction, Mathematics Tests
Gerd Kortemeyer; Julian Nöhl; Daria Onishchuk – Physical Review Physics Education Research, 2024
[This paper is part of the Focused Collection in Artificial Intelligence Tools in Physics Teaching and Physics Education Research.] Using a high-stakes thermodynamics exam as the sample (252 students, four multipart problems), we investigate the viability of four workflows for AI-assisted grading of handwritten student solutions. We find that the…
Descriptors: Grading, Physics, Science Instruction, Artificial Intelligence
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Baral, Sami; Botelho, Anthony; Santhanam, Abhishek; Gurung, Ashish; Cheng, Li; Heffernan, Neil – International Educational Data Mining Society, 2023
Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended…
Descriptors: Mathematics Instruction, Mathematical Concepts, Problem Solving, Test Format
Yi Gui – ProQuest LLC, 2024
This study explores using transfer learning in machine learning for natural language processing (NLP) to create generic automated essay scoring (AES) models, providing instant online scoring for statewide writing assessments in K-12 education. The goal is to develop an instant online scorer that is generalizable to any prompt, addressing the…
Descriptors: Writing Tests, Natural Language Processing, Writing Evaluation, Scoring
Ally, Said; Oreku, George – International Journal of Education and Development using Information and Communication Technology, 2022
The outbreak of the COVID-19 pandemic largely disrupted the continuity of educational delivery. Online learning was the prompt response by educators. However, this comes with a big question on the conduct of assessment. Running examinations traditionally is vulnerable to high security risks and administration costs. A precise mechanism to…
Descriptors: COVID-19, Pandemics, Electronic Learning, Information Systems
Selcuk Acar; Denis Dumas; Peter Organisciak; Kelly Berthiaume – Grantee Submission, 2024
Creativity is highly valued in both education and the workforce, but assessing and developing creativity can be difficult without psychometrically robust and affordable tools. The open-ended nature of creativity assessments has made them difficult to score, expensive, often imprecise, and therefore impractical for school- or district-wide use. To…
Descriptors: Thinking Skills, Elementary School Students, Artificial Intelligence, Measurement Techniques