NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Zhen; Xiaoyan Zhu – Educational and Psychological Measurement, 2024
The pervasive issue of cheating in educational tests has emerged as a paramount concern within the realm of education, prompting scholars to explore diverse methodologies for identifying potential transgressors. While machine learning models have been extensively investigated for this purpose, the untapped potential of TabNet, an intricate deep…
Descriptors: Artificial Intelligence, Models, Cheating, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Filighera; Sebastian Ochs; Tim Steuer; Thomas Tregel – International Journal of Artificial Intelligence in Education, 2024
Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However,…
Descriptors: Cheating, Grading, Form Classes (Languages), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Yang Jiang; Mo Zhang; Jiangang Hao; Paul Deane; Chen Li – Journal of Educational Measurement, 2024
The emergence of sophisticated AI tools such as ChatGPT, coupled with the transition to remote delivery of educational assessments in the COVID-19 era, has led to increasing concerns about academic integrity and test security. Using AI tools, test takers can produce high-quality texts effortlessly and use them to game assessments. It is thus…
Descriptors: Integrity, Artificial Intelligence, Technology Uses in Education, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
D'Souza, Kelwyn A.; Siegfeldt, Denise V. – Decision Sciences Journal of Innovative Education, 2017
Selecting the right methodology to use for detecting cheating in online exams requires considerable time and effort due to a wide variety of scholarly publications on academic dishonesty in online education. This article offers a cheating detection framework that can serve as a guideline for conducting cheating studies. The necessary theories and…
Descriptors: Identification, Cheating, Computer Assisted Testing, Testing Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, I-Fan; Chen, Ruey-Shin; Lu, Hao-Chun – Educational Technology & Society, 2015
With the rapid development of the Internet and information technology, the issues related to online exams have become the concern of an increasing number of researchers. At present, the biggest challenges for the integration of web communication technology into online exams are the ability to detect cheating behaviors during the exam, and the…
Descriptors: Foreign Countries, Computer Assisted Testing, Cheating, Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Feng, Mingyu, Ed.; Käser, Tanja, Ed.; Talukdar, Partha, Ed. – International Educational Data Mining Society, 2023
The Indian Institute of Science is proud to host the fully in-person sixteenth iteration of the International Conference on Educational Data Mining (EDM) during July 11-14, 2023. EDM is the annual flagship conference of the International Educational Data Mining Society. The theme of this year's conference is "Educational data mining for…
Descriptors: Information Retrieval, Data Analysis, Computer Assisted Testing, Cheating
Peer reviewed Peer reviewed
Direct linkDirect link
Tendeiro, Jorge N.; Meijer, Rob R. – Applied Psychological Measurement, 2012
This article extends the work by Armstrong and Shi on CUmulative SUM (CUSUM) person-fit methodology. The authors present new theoretical considerations concerning the use of CUSUM person-fit statistics based on likelihood ratios for the purpose of detecting cheating and random guessing by individual test takers. According to the Neyman-Pearson…
Descriptors: Cheating, Individual Testing, Adaptive Testing, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J. – Journal of Educational and Behavioral Statistics, 2009
A bivariate lognormal model for the distribution of the response times on a test by a pair of test takers is presented. As the model has parameters for the item effects on the response times, its correlation parameter automatically corrects for the spuriousness in the observed correlation between the response times of different test takers because…
Descriptors: Cheating, Models, Reaction Time, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use