NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 153 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiong, Yao; Schunn, Christian D.; Wu, Yong – Journal of Computer Assisted Learning, 2023
Background: For peer assessment, reliability (i.e., consistency in ratings across peers) and validity (i.e., consistency of peer ratings with instructors or experts) are frequently examined in the research literature to address a central concern of instructors and students. Although the average levels are generally promising, both reliability and…
Descriptors: Peer Evaluation, Computer Assisted Testing, Test Reliability, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Buczak, Philip; Huang, He; Forthmann, Boris; Doebler, Philipp – Journal of Creative Behavior, 2023
Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns…
Descriptors: Computer Assisted Testing, Scoring, Automation, Creative Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Filighera; Sebastian Ochs; Tim Steuer; Thomas Tregel – International Journal of Artificial Intelligence in Education, 2024
Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However,…
Descriptors: Cheating, Grading, Form Classes (Languages), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Qiao, Chen; Hu, Xiao – IEEE Transactions on Learning Technologies, 2023
Free text answers to short questions can reflect students' mastery of concepts and their relationships relevant to learning objectives. However, automating the assessment of free text answers has been challenging due to the complexity of natural language. Existing studies often predict the scores of free text answers in a "black box"…
Descriptors: Computer Assisted Testing, Automation, Test Items, Semantics
Susan Barnes Porter – ProQuest LLC, 2022
The data from universal screeners must be valid and reliable in order to use it to make appropriate decisions about how best to allocate resources to support students who are at risk of not passing the state achievement test. The instruments used as part of universal screening must also have diagnostic accuracy. This study examined the diagnostic…
Descriptors: Screening Tests, Accuracy, Computer Assisted Testing, Achievement Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Stenger, Rachel; Olson, Kristen; Smyth, Jolene D. – Field Methods, 2023
Questionnaire designers use readability measures to ensure that questions can be understood by the target population. The most common measure is the Flesch-Kincaid Grade level, but other formulas exist. This article compares six different readability measures across 150 questions in a self-administered questionnaire, finding notable variation in…
Descriptors: Readability, Readability Formulas, Computer Assisted Testing, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Wei; Dorans, Neil J. – ETS Research Report Series, 2021
Agreement statistics and measures of prediction accuracy are often used to assess the quality of two measures of a construct. Agreement statistics are appropriate for measures that are supposed to be interchangeable, whereas prediction accuracy statistics are appropriate for situations where one variable is the target and the other variables are…
Descriptors: Classification, Scaling, Prediction, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Botelho, Anthony; Baral, Sami; Erickson, John A.; Benachamardi, Priyanka; Heffernan, Neil T. – Journal of Computer Assisted Learning, 2023
Background: Teachers often rely on the use of open-ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through…
Descriptors: Natural Language Processing, Artificial Intelligence, Computer Assisted Testing, Mathematics Tests
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11