NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 16 to 30 of 632 results Save | Export
Jing Ma – ProQuest LLC, 2024
This study investigated the impact of scoring polytomous items later on measurement precision, classification accuracy, and test security in mixed-format adaptive testing. Utilizing the shadow test approach, a simulation study was conducted across various test designs, lengths, number and location of polytomous item. Results showed that while…
Descriptors: Scoring, Adaptive Testing, Test Items, Classification
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Peer reviewed Peer reviewed
Direct linkDirect link
Mathias Benedek; Roger E. Beaty – Journal of Creative Behavior, 2025
The PISA assessment 2022 of creative thinking was a moonshot effort that introduced significant advancements over existing creativity tests, including a broad range of domains (written, visual, social, and scientific), implementation in many languages, and sophisticated scoring methods. PISA 2022 demonstrated the general feasibility of assessing…
Descriptors: Creative Thinking, Creativity, Creativity Tests, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Wallace N. Pinto Jr.; Jinnie Shin – Journal of Educational Measurement, 2025
In recent years, the application of explainability techniques to automated essay scoring and automated short-answer grading (ASAG) models, particularly those based on transformer architectures, has gained significant attention. However, the reliability and consistency of these techniques remain underexplored. This study systematically investigates…
Descriptors: Automation, Grading, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Buczak, Philip; Huang, He; Forthmann, Boris; Doebler, Philipp – Journal of Creative Behavior, 2023
Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart from the associated costs this approach entails two potential risks. First, human raters can be subjective in their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring patterns…
Descriptors: Computer Assisted Testing, Scoring, Automation, Creative Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Lu; Huang, Yingshi; Li, Shuhang; Chen, Ping – Journal of Educational Measurement, 2023
Online calibration is a key technology for item calibration in computerized adaptive testing (CAT) and has been widely used in various forms of CAT, including unidimensional CAT, multidimensional CAT (MCAT), CAT with polytomously scored items, and cognitive diagnostic CAT. However, as multidimensional and polytomous assessment data become more…
Descriptors: Computer Assisted Testing, Adaptive Testing, Computation, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation
Hacer Karamese – ProQuest LLC, 2022
Multistage adaptive testing (MST) has become popular in the testing industry because the research has shown that it combines the advantages of both linear tests and item-level computer adaptive testing (CAT). The previous research efforts primarily focused on MST design issues such as panel design, module length, test length, distribution of test…
Descriptors: Adaptive Testing, Scoring, Computer Assisted Testing, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Rebecka Weegar; Peter Idestam-Almquist – International Journal of Artificial Intelligence in Education, 2024
Machine learning methods can be used to reduce the manual workload in exam grading, making it possible for teachers to spend more time on other tasks. However, when it comes to grading exams, fully eliminating manual work is not yet possible even with very accurate automated grading, as any grading mistakes could have significant consequences for…
Descriptors: Grading, Computer Assisted Testing, Introductory Courses, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andersen, Øistein E.; Yuan, Zheng; Watson, Rebecca; Cheung, Kevin Yet Fong – International Educational Data Mining Society, 2021
Automated essay scoring (AES), where natural language processing is applied to score written text, can underpin educational resources in blended and distance learning. AES performance has typically been reported in terms of correlation coefficients or agreement statistics calculated between a system and an expert human examiner. We describe the…
Descriptors: Evaluation Methods, Scoring, Essays, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Huawei, Shi; Aryadoust, Vahid – Education and Information Technologies, 2023
Automated writing evaluation (AWE) systems are developed based on interdisciplinary research and technological advances such as natural language processing, computer sciences, and latent semantic analysis. Despite a steady increase in research publications in this area, the results of AWE investigations are often mixed, and their validity may be…
Descriptors: Writing Evaluation, Writing Tests, Computer Assisted Testing, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Pearson, Christopher; Penna, Nigel – Assessment & Evaluation in Higher Education, 2023
E-assessments are becoming increasingly common and progressively more complex. Consequently, how these longer, more complex questions are designed and marked is imperative. This article uses the NUMBAS e-assessment tool to investigate the best practice for creating longer questions and their mark schemes on surveying modules taken by engineering…
Descriptors: Automation, Scoring, Engineering Education, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McCaffrey, Daniel F.; Casabianca, Jodi M.; Ricker-Pedley, Kathryn L.; Lawless, René R.; Wendler, Cathy – ETS Research Report Series, 2022
This document describes a set of best practices for developing, implementing, and maintaining the critical process of scoring constructed-response tasks. These practices address both the use of human raters and automated scoring systems as part of the scoring process and cover the scoring of written, spoken, performance, or multimodal responses.…
Descriptors: Best Practices, Scoring, Test Format, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Firoozi, Tahereh; Bulut, Okan; Epp, Carrie Demmans; Naeimabadi, Ali; Barbosa, Denilson – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students' written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems…
Descriptors: Computer Assisted Testing, Scoring, Essays, Artificial Intelligence
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  43