Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 40 |
| Since 2017 (last 10 years) | 83 |
| Since 2007 (last 20 years) | 106 |
Descriptor
| Computer Science Education | 128 |
| Programming | 107 |
| Programming Languages | 49 |
| Foreign Countries | 38 |
| Teaching Methods | 31 |
| Introductory Courses | 30 |
| College Students | 29 |
| Computer Software | 29 |
| Higher Education | 22 |
| Undergraduate Students | 21 |
| Instructional Effectiveness | 19 |
| More ▼ | |
Source
Author
| Barnes, Tiffany | 9 |
| Price, Thomas W. | 5 |
| Chi, Min | 4 |
| Gusev, Dmitri A. | 4 |
| Priti Oli | 3 |
| Rabin Banjade | 3 |
| Shi, Yang | 3 |
| Singla, Adish | 3 |
| Vasile Rus | 3 |
| Zhi, Rui | 3 |
| Boyer, Kristy Elizabeth | 2 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 128 |
| Reports - Research | 79 |
| Reports - Descriptive | 29 |
| Reports - Evaluative | 16 |
| Tests/Questionnaires | 4 |
| Guides - Classroom - Teacher | 3 |
| Journal Articles | 3 |
| Information Analyses | 2 |
| Opinion Papers | 1 |
Education Level
Audience
| Researchers | 1 |
Location
| Japan | 7 |
| Indiana | 4 |
| Philippines | 4 |
| Pennsylvania | 3 |
| Australia | 2 |
| Canada | 2 |
| Cyprus | 2 |
| France | 2 |
| Germany | 2 |
| Alaska | 1 |
| Algeria | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Flesch Reading Ease Formula | 1 |
| Learning Style Inventory | 1 |
What Works Clearinghouse Rating
Mehmet Arif Demirta¸; Max Fowler; Kathryn Cunningham – International Educational Data Mining Society, 2024
Analyzing which skills students develop in introductory programming education is an important question for the computer science education community. These key skills and concepts have been formalized as knowledge components, which are units of knowledge that can be measured by performance on a set of tasks. While knowledge components in other…
Descriptors: Programming, Computer Science Education, Skill Development, Knowledge Level
Rosziati Ibrahim; Mizani Mohamad Madon; Zhiang Yue Lee; Piraviendran A/L Rajendran; Jahari Abdul Wahab; Faaizah Shahbodin – International Society for Technology, Education, and Science, 2023
This paper discusses the steps involve in project development for developing the mobile application, namely Blood Bank Application and developing the convertor for software testing. The project development is important for Computer Science students for them to learn the important steps in developing the application and testing the reliability of…
Descriptors: Program Administration, Educational Technology, Computer Software, Testing
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Peer reviewedPriti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Jesper Dannath; Alina Deriyeva; Benjamin Paaßen – International Educational Data Mining Society, 2025
Research on the effectiveness of Intelligent Tutoring Systems (ITSs) suggests that automatic hint generation has the best effect on learning outcomes when hints are provided on the level of intermediate steps. However, ITSs for programming tasks face the challenge to decide on the granularity of steps for feedback, since it is not a priori clear…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Undergraduate Students
Boxuan Ma; Li Chen; Shin’ichi Konomi – International Association for Development of the Information Society, 2024
Generative artificial intelligence (AI) tools like ChatGPT are becoming increasingly common in educational settings, especially in programming education. However, the impact of these tools on the learning process, student performance, and best practices for their integration remains underexplored. This study examines student experiences and…
Descriptors: Artificial Intelligence, Computer Science Education, Programming, Computer Uses in Education
Muhammad Fawad Akbar Khan; Max Ramsdell; Erik Falor; Hamid Karimi – International Educational Data Mining Society, 2024
This paper undertakes a thorough evaluation of ChatGPT's code generation capabilities, contrasting them with those of human programmers from both educational and software engineering standpoints. The emphasis is placed on elucidating its importance in these intertwined domains. To facilitate a robust analysis, we curated a novel dataset comprising…
Descriptors: Artificial Intelligence, Automation, Computer Science Education, Programming
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Andrea Domínguez-Lara; Wulfrano Arturo Luna-Ramírez – International Association for Development of the Information Society, 2022
The automatic code generation is the process of generating source code snippets from a program, i.e., code for generating code. Its importance lies in facilitating software development, particularly important is helping in the implementation of software designs such as engineering diagrams, in such a case, automatic code generation copes with the…
Descriptors: Programming, Coding, Computer Software, Programming Languages
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation


