Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 27 |
Since 2016 (last 10 years) | 50 |
Since 2006 (last 20 years) | 53 |
Descriptor
Computer Science Education | 53 |
Programming | 29 |
Prediction | 18 |
College Students | 17 |
Intelligent Tutoring Systems | 16 |
Models | 15 |
Data Analysis | 13 |
Feedback (Response) | 13 |
Undergraduate Students | 13 |
Classification | 12 |
Student Behavior | 12 |
More ▼ |
Source
International Educational… | 53 |
Author
Barnes, Tiffany | 14 |
Chi, Min | 7 |
Price, Thomas W. | 7 |
Heckman, Sarah | 4 |
Mao, Ye | 4 |
Shi, Yang | 4 |
Singla, Adish | 4 |
Boyer, Kristy Elizabeth | 3 |
Lynch, Collin | 3 |
Marwan, Samiha | 3 |
Zhi, Rui | 3 |
More ▼ |
Publication Type
Speeches/Meeting Papers | 50 |
Reports - Research | 45 |
Reports - Descriptive | 3 |
Reports - Evaluative | 3 |
Collected Works - Proceedings | 2 |
Education Level
Audience
Location
Germany | 3 |
Brazil | 2 |
Uruguay | 2 |
Virginia | 2 |
Arizona | 1 |
China | 1 |
France | 1 |
Iceland | 1 |
Massachusetts | 1 |
Massachusetts (Boston) | 1 |
North Carolina | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gao, Zhikai; Erickson, Bradley; Xu, Yiqiao; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2022
In computer science education timely help seeking during large programming projects is essential for student success. Help-seeking in typical courses happens in office hours and through online forums. In this research, we analyze students coding activities and help requests to understand the interaction between these activities. We collected…
Descriptors: Computer Science Education, College Students, Programming, Coding
Cleuziou, Guillaume; Flouvat, Frédéric – International Educational Data Mining Society, 2021
Improving the pedagogical effectiveness of programming training platforms is a hot topic that requires the construction of fine and exploitable representations of learners' programs. This article presents a new approach for learning program embeddings. Starting from the hypothesis that the function of a program, but also its "style", can…
Descriptors: Programming, Computer Science Education, Electronic Learning, Data Analysis
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Shi, Yang; Mao, Ye; Barnes, Tiffany; Chi, Min; Price, Thomas W. – International Educational Data Mining Society, 2021
Automatically detecting bugs in student program code is critical to enable formative feedback to help students pinpoint errors and resolve them. Deep learning models especially code2vec and ASTNN have shown great success for "large-scale" code classification. It is not clear, however, whether they can be effectively used for bug…
Descriptors: Artificial Intelligence, Program Effectiveness, Coding, Computer Science Education
Gao, Zhikai; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany – International Educational Data Mining Society, 2021
As Computer Science has increased in popularity so too have class sizes and demands on faculty to provide support. It is therefore more important than ever for us to identify new ways to triage student questions, identify common problems, target students who need the most help, and better manage instructors' time. By analyzing interaction data…
Descriptors: Automation, Classification, Help Seeking, Computer Science Education
Höppner, Frank – International Educational Data Mining Society, 2021
Various similarity measures for source code have been proposed, many rely on edit- or tree-distance. To support a lecturer in quickly assessing live or online exercises with respect to "approaches taken by the students," we compare source code on a more abstract, semantic level. Even if novice student's solutions follow the same idea,…
Descriptors: Coding, Classification, Programming, Computer Science Education
Bulathwela, Sahan; Verma, Meghana; Pérez-Ortiz, María; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2022
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces: (1) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to…
Descriptors: Video Technology, Lecture Method, Data Analysis, Prediction
Gabbay, Hagit; Cohen, Anat – International Educational Data Mining Society, 2022
The challenge of learning programming in a MOOC is twofold: acquiring programming skills and learning online, independently. Automated testing and feedback systems, often offered in programming courses, may scaffold MOOC learners by providing immediate feedback and unlimited re-submissions of code assignments. However, research still lacks…
Descriptors: Automation, Feedback (Response), Student Behavior, MOOCs
Kasakowskij, Regina; Haake, Joerg M.; Seidel, Niels – International Educational Data Mining Society, 2023
Improving competence requires practicing, e.g. by solving tasks. The Self-Assessment task type is a new form of scalable online task providing immediate feedback, sample solution and iterative improvement within the newly developed SAFRAN plugin. Effective learning not only requires suitable tasks but also their meaningful usage within the…
Descriptors: Self Evaluation (Individuals), Student Behavior, College Students, Learning Processes
Baucks, Frederik; Wiskott, Laurenz – International Educational Data Mining Society, 2022
Curriculum research is an important tool for understanding complex processes within a degree program. In particular, stochastic graphical models and simulations on related curriculum graphs have been used to make predictions about dropout rates, grades, and degree completion time. There exists, however, little research on changes in the curriculum…
Descriptors: Curriculum Development, Educational Change, Educational Policy, Prerequisites
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Gaweda, Adam M.; Lynch, Collin F. – International Educational Data Mining Society, 2021
There are a number of novel exercise types that students can utilize while learning Computer Science, each with its own level of complexity and interaction as outlined by the ICAP Framework [10]. Some are "Interactive," like solving coding problems; "Constructive," like explaining code; "Active," like retyping source…
Descriptors: Computer Science Education, Learning Activities, Student Behavior, Study Habits
Gitinabard, Niki; Okoilu, Ruth; Xu, Yiqao; Heckman, Sarah; Barnes, Tiffany; Lynch, Collin – International Educational Data Mining Society, 2020
Teamwork, often mediated by version control systems such as Git and Apache Subversion (SVN), is central to professional programming. As a consequence, many colleges are incorporating both collaboration and online development environments into their curricula even in introductory courses. In this research, we collected GitHub logs from two…
Descriptors: Teamwork, Group Activities, Student Projects, Programming
Efremov, Aleksandr; Ghosh, Ahana; Singla, Adish – International Educational Data Mining Society, 2020
Intelligent tutoring systems for programming education can support students by providing personalized feedback when a student is stuck in a coding task. We study the problem of designing a hint policy to provide a next-step hint to students from their current partial solution, e.g., which line of code should be edited next. The state of the art…
Descriptors: Intelligent Tutoring Systems, Feedback (Response), Computer Science Education, Artificial Intelligence