NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Baichang; Xia, Liying; Su, Siyu – Education and Information Technologies, 2022
One of the aspects of programming that novices often struggle with is the understanding of abstract concepts, such as variables, loops, expressions, and especially Boolean operations. This paper aims to explore the effects of programming tools with different degrees of embodiment on learning Boolean operations in elementary school. To this end, 67…
Descriptors: Programming Languages, Programming, Novices, Elementary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Haglund, Pontus; Strömbäck, Filip; Mannila, Linda – Informatics in Education, 2021
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and…
Descriptors: Computer Science Education, Programming, Programming Languages, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sbaraglia, Marco; Lodi, Michael; Martini, Simone – Informatics in Education, 2021
Introductory programming courses (CS1) are difficult for novices. Inspired by "Problem solving followed by instruction" and "Productive Failure" approaches, we define an original "necessity-driven" learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient…
Descriptors: Programming, Introductory Courses, Computer Science Education, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cansu, Sibel Kiliçarslan; Cansu, Fatih Kürsat – International Journal of Computer Science Education in Schools, 2019
Computers and smart devices have become ubiquitous staples of our lives. Computers and computer-controlled devices are used in all industries from medicine to engineering, and textile production. One field where computers have inevitably spread into is education, and one pre-requisite of controlling computers, or increasing the level and…
Descriptors: Computation, Thinking Skills, Problem Solving, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Çakiroglu, Ünal; Çevik, Isak – Education and Information Technologies, 2022
In order to teach Computational Thinking (CT) skills to young students, Block-Based Programming Environments (BBPEs) are integrated into secondary school computer science (CS) education curricula. As a CT skill, abstraction is one of the prominent skills, which is difficult to enhance and measure. Researchers developed some scales for measuring…
Descriptors: Computation, Thinking Skills, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Orly Barzilai; Sofia Sherman; Moshe Leiba; Hadar Spiegel – Journal of Information Systems Education, 2024
Data Structures and Algorithms (DS) is a basic computer science course that is a prerequisite for taking advanced information systems (IS) curriculum courses. The course aims to teach students how to analyze a problem, design a solution, and implement it using pseudocode to construct knowledge and develop the necessary skills for algorithmic…
Descriptors: Statistics Education, Problem Solving, Information Systems, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Judith Galezer; Smadar Szekely – Informatics in Education, 2024
Spark, one of the products offered by MyQ (formerly Plethora), is a game-based platform meticulously designed to introduce students to the foundational concepts of computer science. By navigating through logical challenges, users delve into topics like abstraction, loops, and graph patterns. Setting itself apart from its counterparts, Spark boasts…
Descriptors: Learning Management Systems, Game Based Learning, Computer Science Education, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fowler, Megan; Hallstrom, Jason; Hollingsworth, Joseph; Kraemer, Eileen; Sitaraman, Murali; Sun, Yu-Shan; Wang, Jiadi; Washington, Gloria – Informatics in Education, 2021
Computer science students often evaluate the behavior of the code they write by running it on specific inputs and studying the outputs, and then apply their comprehension to a more general understanding of the code. While this is a good starting point in the student's career, successful graduates must be able to reason analytically about the code…
Descriptors: Computer Science Education, Coding, Computer Software, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Minji Jeon; Kyungbin Kwon – TechTrends: Linking Research and Practice to Improve Learning, 2024
This study investigated the computational thinking (CT) practices of eight pre-service teachers through their Scratch and Python programs. Conducted within an undergraduate-level computer science education course, students learned CT concepts via parallel instruction in block-based programming (Scratch) and text-based programming (Python). The…
Descriptors: Preservice Teacher Education, Preservice Teachers, Computation, Cognitive Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Waite, Jane Lisa; Curzon, Paul; Marsh, William; Sentance, Sue; Hadwen-Bennett, Alex – International Journal of Computer Science Education in Schools, 2018
Research indicates that understanding levels of abstraction (LOA) and being able to move between the levels is essential to programming success. For K-5 contexts LOA levels have been named: problem, design, code and running the code. In a qualitative exploratory study, five K-5 teachers were interviewed on their uses of LOA, particularly the…
Descriptors: Elementary School Teachers, Programming, Pedagogical Content Knowledge, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mirolo, Claudio; Izu, Cruz; Lonati, Violetta; Scapin, Emanuele – Informatics in Education, 2021
When we "think like a computer scientist," we are able to systematically solve problems in different fields, create software applications that support various needs, and design artefacts that model complex systems. Abstraction is a soft skill embedded in all those endeavours, being a main cornerstone of computational thinking. Our…
Descriptors: Computer Science Education, Soft Skills, Thinking Skills, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Shiau-Wei; Looi, Chee-Kit; Ho, Weng Kin; Kim, Mi Song – Journal of Educational Computing Research, 2023
The importance of computational thinking (CT) as a 21st-century skill for future generations has been a key consideration in the reforms of many national and regional educational systems. Much attention has been paid to integrating CT into the traditional subject classrooms. This paper describes a scoping review of learning tools for integrating…
Descriptors: Thinking Skills, 21st Century Skills, Teaching Methods, Research Reports
Peer reviewed Peer reviewed
Direct linkDirect link
Ezeamuzie, Ndudi O.; Leung, Jessica S. C.; Ting, Fridolin S. T. – Journal of Educational Computing Research, 2022
Although abstraction is widely understood to be one of the primary components of computational thinking, the roots of abstraction may be traced back to different fields. Hence, the meaning of abstraction in the context of computational thinking is often confounded, as researchers interpret abstraction through diverse lenses. To disentangle these…
Descriptors: Computer Science Education, Thinking Skills, Research Reports, Abstract Reasoning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Waite, Jane Lisa; Curzon, Paul; Marsh, William; Sentance, Sue; Hadwen-Bennett, Alex – Online Submission, 2018
Research indicates that understanding levels of abstraction (LOA) and being able to move between the levels is essential to programming success. For K-5 contexts we rename the LOA levels: problem, design, code and running the code. In our qualitative exploratory study, we interviewed five K-5 teachers on their uses of LOA, particularly the design…
Descriptors: Elementary School Teachers, Computer Science Education, Programming, Abstract Reasoning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ginat, David – Informatics in Education, 2021
The notion of algorithm may be perceived in different levels of abstraction. In the lower levels it is an operational set of instructions. In higher levels it may be viewed as an object with properties, solving a problem with characteristics. Novices mostly relate to the lower levels. Yet, higher levels are very relevant for them as well. We…
Descriptors: Problem Solving, Computation, Comparative Analysis, Competence
Previous Page | Next Page »
Pages: 1  |  2