NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula1
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Erkan Er; Gökhan Akçapinar; Alper Bayazit; Omid Noroozi; Seyyed Kazem Banihashem – British Journal of Educational Technology, 2025
Despite the growing research interest in the use of large language models for feedback provision, it still remains unknown how students perceive and use AI-generated feedback compared to instructor feedback in authentic settings. To address this gap, this study compared instructor and AI-generated feedback in a Java programming course through an…
Descriptors: Student Evaluation, Student Attitudes, Feedback (Response), Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fein, Benedikt; Graßl, Isabella; Beck, Florian; Fraser, Gordon – International Educational Data Mining Society, 2022
The recent trend of embedding source code for machine learning applications also enables new opportunities in learning analytics in programming education, but which code embedding approach is most suitable for learning analytics remains an open question. A common approach to embedding source code lies in extracting syntactic information from a…
Descriptors: Artificial Intelligence, Learning Analytics, Programming, Programming Languages
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Judith Galezer; Smadar Szekely – Informatics in Education, 2024
Spark, one of the products offered by MyQ (formerly Plethora), is a game-based platform meticulously designed to introduce students to the foundational concepts of computer science. By navigating through logical challenges, users delve into topics like abstraction, loops, and graph patterns. Setting itself apart from its counterparts, Spark boasts…
Descriptors: Learning Management Systems, Game Based Learning, Computer Science Education, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Guangrui Fan; Dandan Liu; Rui Zhang; Lihu Pan – International Journal of STEM Education, 2025
Purpose: This study investigates the impact of AI-assisted pair programming on undergraduate students' intrinsic motivation, programming anxiety, and performance, relative to both human-human pair programming and individual programming approaches. Methods: A quasi-experimental design was conducted over two academic years (2023-2024) with 234…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Programming
Peer reviewed Peer reviewed
Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boxuan Ma; Li Chen; Shin’ichi Konomi – International Association for Development of the Information Society, 2024
Generative artificial intelligence (AI) tools like ChatGPT are becoming increasingly common in educational settings, especially in programming education. However, the impact of these tools on the learning process, student performance, and best practices for their integration remains underexplored. This study examines student experiences and…
Descriptors: Artificial Intelligence, Computer Science Education, Programming, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Quadir, Benazir; Mostafa, Kazi; Yang, Jie Chi; Shen, Juming; Akter, Rokaya – Education and Information Technologies, 2023
This study used the ARCS approach to investigate the effects of university students' motivation, including attention, relevance, confidence, and satisfaction, to use the Programming Teaching Assistant (PTA) on their Programming Problem-Solving Skills (PPSS). Previous studies have shown that PTA features enhance learners' programming performance,…
Descriptors: Programming Languages, Computer Science Education, Problem Solving, Student Motivation
Xiaoyi Tian – ProQuest LLC, 2024
As Artificial Intelligence (AI) becomes increasingly ubiquitous in society, conversational agents such as Siri, Alexa, and ChatGPT are shaping the experiences of younger generations. However, these young users often lack opportunities to learn about the inner workings of these AI technologies. One way to foster such learning is by empowering…
Descriptors: Artificial Intelligence, Technology Uses in Education, Access to Computers, Access to Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lokkila, Erno; Christopoulos, Athanasios; Laakso, Mikko-Jussi – Informatics in Education, 2023
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student…
Descriptors: Prior Learning, Programming, Computer Science Education, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Owen H. T.; Huang, Anna Y. Q.; Tsai, Danny C. L.; Yang, Stephen J. H. – Educational Technology & Society, 2021
Human-guided machine learning can improve computing intelligence, and it can accurately assist humans in various tasks. In education research, artificial intelligence (AI) is applicable in many situations, such as predicting students' learning paths and strategies. In this study, we explore the benefits of repetitive practice of short-answer…
Descriptors: Test Items, Artificial Intelligence, Test Construction, Student Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Xiaoming; Schwieger, Dana – Information Systems Education Journal, 2023
Rapid advancements and emergent technologies add an additional layer of complexity to preparing computer science and information technology higher education students for entering the post pandemic job market. Knowing and predicting employers' technical skill needs is essential for shaping curriculum development to address the emergent skill gap.…
Descriptors: Network Analysis, Employment Opportunities, Information Technology, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fagan, Bryan J.; Payne, Bryson R. – Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2017
The US Bureau of Labor Statistics predicts over 8 million job openings in IT and computing, including 1 million cybersecurity postings, over the current five-year period. This paper presents lessons learned in preparing middle-school students in rural Georgia for future careers in computer science/ IT by teaching computer programming in the free,…
Descriptors: Programming Languages, Teaching Methods, Computer Science Education, Open Source Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Weragama, Dinesha; Reye, Jim – International Journal of Artificial Intelligence in Education, 2014
Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that…
Descriptors: Intelligent Tutoring Systems, Programming, Computer Science Education, Programming Languages
Previous Page | Next Page »
Pages: 1  |  2