NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miedema, Daphne; Fletcher, George; Aivaloglou, Efthimia – ACM Transactions on Computing Education, 2023
Prior studies in the Computer Science education literature have illustrated that novices make many mistakes in composing SQL queries. Query formulation proves to be difficult for students. Only recently, some headway was made towards understanding why SQL leads to so many mistakes, by uncovering student misconceptions. In this article, we shed new…
Descriptors: Computer Science Education, Novices, Misconceptions, Programming Languages
Villamor, Maureen M. – Research and Practice in Technology Enhanced Learning, 2020
High attrition and dropout rates are common in introductory programming courses. One of the reasons students drop out is loss of motivation due to the lack of feedback and proper assessment of their progress. Hence, a process-oriented approach is needed in assessing programming progress, which entails examining and measuring students' compilation…
Descriptors: Novices, Problem Solving, Computer Science Education, Introductory Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsabari, Stav; Segal, Avi; Gal, Kobi – International Educational Data Mining Society, 2023
Automatically identifying struggling students learning to program can assist teachers in providing timely and focused help. This work presents a new deep-learning language model for predicting "bug-fix-time", the expected duration between when a software bug occurs and the time it will be fixed by the student. Such information can guide…
Descriptors: College Students, Computer Science Education, Programming, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, Craig S.; Settle, Amber – ACM Transactions on Computing Education, 2019
We investigate conditions in which novices make some reference errors when programming. We asked students from introductory programming courses to perform a simple code-writing task that required constructing references to objects and their attributes. By experimentally manipulating the nature of the attributes in the tasks, from identifying…
Descriptors: Error Patterns, Novices, Programming, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Rashkovits, Rami; Lavy, Ilana – International Journal of Information and Communication Technology Education, 2020
The present study examines the difficulties novice data modelers face when asked to provide a data model addressing a given problem. In order to map these difficulties and their causes, two short data modeling problems were given to 82 students who had completed an introductory course in database modeling. Both problems involve three entity sets…
Descriptors: Models, Data, Undergraduate Students, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
McCall, Davin; Kölling, Michael – ACM Transactions on Computing Education, 2019
The types of programming errors that novice programmers make and struggle to resolve have long been of interest to researchers. Various past studies have analyzed the frequency of compiler diagnostic messages. This information, however, does not have a direct correlation to the types of errors students make, due to the inaccuracy and imprecision…
Descriptors: Computer Software, Programming, Error Patterns, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Jegede, Philip Olu; Olajubu, Emmanuel Ajayi; Ejidokun, Adekunle Olugbenga; Elesemoyo, Isaac Oluwafemi – Journal of Information Technology Education: Innovations in Practice, 2019
Aim/Purpose: The study examined types of errors made by novice programmers in different Java concepts with students of different ability levels in programming as well as the perceived causes of such errors. Background: To improve code writing and debugging skills, efforts have been made to taxonomize programming errors and their causes. However,…
Descriptors: Programming Languages, Programming, Low Achievement, High Achievement
Rebecca Smith – ProQuest LLC, 2019
In recent years, computer science has become a cornerstone of modern society. As a result, enrollment in undergraduate computer science programs has expanded rapidly. While the influx of talent into the field will undoubtedly lead to countless technological developments, this growth also brings new pedagogical challenges. Educational resources,…
Descriptors: Computer Science Education, Individualized Instruction, Interaction, Learning Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Brown, Neil C. C.; Altadmri, Amjad – ACM Transactions on Computing Education, 2017
Teaching is the process of conveying knowledge and skills to learners. It involves preventing misunderstandings or correcting misconceptions that learners have acquired. Thus, effective teaching relies on solid knowledge of the discipline, but also a good grasp of where learners are likely to trip up or misunderstand. In programming, there is much…
Descriptors: Novices, Programming Languages, Programming, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Brett A.; Glanville, Graham; Iwashima, Ricardo; McDonnell, Claire; Goslin, Kyle; Mooney, Catherine – Computer Science Education, 2016
Programming is an essential skill that many computing students are expected to master. However, programming can be difficult to learn. Successfully interpreting compiler error messages (CEMs) is crucial for correcting errors and progressing toward success in programming. Yet these messages are often difficult to understand and pose a barrier to…
Descriptors: Computer Science Education, Programming, Novices, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Veerasamy, Ashok Kumar; D'Souza, Daryl; Laakso, Mikko-Jussi – Journal of Educational Technology Systems, 2016
This article presents a study aimed at examining the novice student answers in an introductory programming final e-exam to identify misconceptions and types of errors. Our study used the Delphi concept inventory to identify student misconceptions and skill, rule, and knowledge-based errors approach to identify the types of errors made by novices…
Descriptors: Computer Science Education, Programming, Novices, Misconceptions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mannila, Linda – Informatics in Education, 2010
In this paper, we analyze the errors novice students make when developing invariant based programs. In addition to presenting the general error types, we also look at what students have difficulty with when it comes to expressing invariants. The results indicate that an introductory course utilizing the invariant based approach is suitable from…
Descriptors: Novices, Error Patterns, Difficulty Level, Introductory Courses