NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 55 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Atharva Naik; Jessica Ruhan Yin; Anusha Kamath; Qianou Ma; Sherry Tongshuang Wu; R. Charles Murray; Christopher Bogart; Majd Sakr; Carolyn P. Rose – British Journal of Educational Technology, 2025
The relative effectiveness of reflection either through student generation of contrasting cases or through provided contrasting cases is not well-established for adult learners. This paper presents a classroom study to investigate this comparison in a college level Computer Science (CS) course where groups of students worked collaboratively to…
Descriptors: Cooperative Learning, Reflection, College Students, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Andrew Millam; Christine Bakke – Journal of Information Technology Education: Innovations in Practice, 2024
Aim/Purpose: This paper is part of a multi-case study that aims to test whether generative AI makes an effective coding assistant. Particularly, this work evaluates the ability of two AI chatbots (ChatGPT and Bing Chat) to generate concise computer code, considers ethical issues related to generative AI, and offers suggestions for how to improve…
Descriptors: Coding, Artificial Intelligence, Natural Language Processing, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Rui Wang; Haili Ling; Jie Chen; Huijuan Fu – International Journal of Distance Education Technologies, 2025
This study adopted the Latent Dirichlet Allocation (LDA) to extract learners' needs based on 70,145 reviews from online course designed for software design and development in China and then applied Quality Function Deployment (QFD) to map learners' differentiated needs into quality attributes. Taking national first-class courses as the…
Descriptors: Educational Improvement, Student Needs, Computer Science Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Dominic Lohr; Marc Berges; Abhishek Chugh; Michael Kohlhase; Dennis Müller – Journal of Computer Assisted Learning, 2025
Background: Over the past few decades, the process and methodology of automatic question generation (AQG) have undergone significant transformations. Recent progress in generative natural language models has opened up new potential in the generation of educational content. Objectives: This paper explores the potential of large language models…
Descriptors: Resource Units, Semantics, Automation, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Xieling Chen; Haoran Xie; S. Joe Qin; Fu Lee Wang; Yinan Hou – European Journal of Education, 2025
Artificial intelligence (AI) is increasingly exploited to promote student engagement. This study combined topic modelling, keyword analysis, trend test and systematic analysis methodologies to analyse AI-supported student engagement (AIsE) studies regarding research keywords and topics, AI roles, AI systems and algorithms, methods and domains,…
Descriptors: Artificial Intelligence, Learner Engagement, Technology Uses in Education, Electronic Learning
Lahiru Ariyananda – ProQuest LLC, 2022
DEVS (Discrete Event System Specification) is a formalism that was introduced in the mid-1970s by Bernard Zeigler, for modeling and analysis of discrete event systems. DEVS is essentially a formal mathematical language for specifying complex systems through models that can be simulated and has been executed in object-oriented software, DEVSJava…
Descriptors: Active Learning, Programming, Computer Software, Computer Science Education
Peer reviewed Peer reviewed
Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Sina Rismanchian; Eesha Tur Razia Babar; Shayan Doroudi – Annenberg Institute for School Reform at Brown University, 2025
In November 2022, OpenAI released ChatGPT, a groundbreaking generative AI chatbot backed by large language models (LLMs). Since then, these models have seen various applications in education, from Socratic tutoring and writing assistance to teacher training and essay scoring. Despite their widespread use among high school and college students in…
Descriptors: Artificial Intelligence, Natural Language Processing, Technology Uses in Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Anas Husain – Journal of Information Technology Education: Research, 2024
Aim/Purpose: This study aims to investigate the perceptions of programming instructors among the Information Technology faculty members at AL al-Bayt University regarding the effectiveness of ChatGPT in supporting the programming instructional process. This study also aims to explore their experiences concerning the potential benefits and adverse…
Descriptors: Artificial Intelligence, Man Machine Systems, Natural Language Processing, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Dorottya Demszky; Jing Liu; Heather C. Hill; Dan Jurafsky; Chris Piech – Educational Evaluation and Policy Analysis, 2024
Providing consistent, individualized feedback to teachers is essential for improving instruction but can be prohibitively resource-intensive in most educational contexts. We develop M-Powering Teachers, an automated tool based on natural language processing to give teachers feedback on their uptake of student contributions, a high-leverage…
Descriptors: Online Courses, Automation, Feedback (Response), Large Group Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Almotairi, Maram; Fkih, Fethi – Journal of Education and e-Learning Research, 2022
The Question answering (QA) system plays a basic role in the acquisition of information and the e-learning environment is considered to be the field that is most in need of the question-answering system to help learners ask questions in natural language and get answers in short periods of time. The main problem in this context is how to understand…
Descriptors: Semantics, Natural Language Processing, Intelligent Tutoring Systems, Ambiguity (Semantics)
Charalampos-S Charitsis – ProQuest LLC, 2023
The employment rate of software developers has risen significantly over the last 30 years. As a result, more students are considering computer science as a potential career path. Over the last 15 years, introductory programming course (CS1) enrollment has been increasing at a much faster rate than the increase in the number of CS faculty, with no…
Descriptors: Computer Science Education, Programming, Natural Language Processing, Computer Software
Saira Anwar; Ahmed Ashraf Butt; Muhsin Menekse – Grantee Submission, 2023
This study explored the effectiveness of scaffolding in students' reflection writing process. We compared two sections of an introductory computer programming course (N=188). In Section 1, students did not receive any scaffolding while generating reflections, whereas in Section 2, students were scaffolded during the reflection writing process.…
Descriptors: Scaffolding (Teaching Technique), Writing Instruction, Writing Processes, Writing (Composition)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mitra, Reshmi; Schwieger, Dana; Lowe, Robert – Information Systems Education Journal, 2023
Many universities have, or are facing, the task of providing high quality essential customer services with fewer financial and human resources. The growing diversity of students, their needs and proficiencies, along with the increasing variety of university program offerings, make providing customized, ondemand, automated solutions crucial to…
Descriptors: Universities, Academic Advising, Artificial Intelligence, Faculty Workload
Peer reviewed Peer reviewed
Direct linkDirect link
Abdur R. Shahid; Sushma Mishra – Journal of Information Systems Education, 2024
Due to the increasing demand for efficient, effective, and profitable applications of Artificial Intelligence (AI) in various industries, there is an immense need for professionals with the right skills to meet this demand. As a result, several institutions have started to offer AI programs. Yet, there is a notable gap in academia: the absence of…
Descriptors: Masters Programs, Information Systems, Computer Science Education, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4