NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mentzer, Kevin; Galante, Zachary; Frydenberg, Mark – Information Systems Education Journal, 2022
Organizations are keenly interested in data gathering from websites where discussions of products and brands occur. This increasingly means that programmers need an understanding of how to work with website application programming interfaces (APIs) for data acquisition. In this hands-on lab activity, students will learn how to gather data from…
Descriptors: Prediction, Competition, Music, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ma, Yingbo; Katuka, Gloria Ashiya; Celepkolu, Mehmet; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2022
Collaborative learning is a complex process during which two or more learners exchange opinions, construct shared knowledge, and solve problems together. While engaging in this interactive process, learners' satisfaction toward their partners plays a crucial role in defining the success of the collaboration. If intelligent systems could predict…
Descriptors: Middle School Students, Cooperative Learning, Prediction, Peer Relationship
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Xiaoming; Schwieger, Dana – Information Systems Education Journal, 2023
Rapid advancements and emergent technologies add an additional layer of complexity to preparing computer science and information technology higher education students for entering the post pandemic job market. Knowing and predicting employers' technical skill needs is essential for shaping curriculum development to address the emergent skill gap.…
Descriptors: Network Analysis, Employment Opportunities, Information Technology, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bezuidenhout, Hanrie S.; Henning, Elizabeth – Pythagoras, 2022
The current quantitative study, a naturalistic field experiment, was conducted in a public primary school in Soweto, Johannesburg, with the objective to examine how children's achievement on four assessments at the beginning of Grade R, namely their numeracy, their mathematics-specific vocabulary, their executive functions, and their logical…
Descriptors: Programming Languages, Public Schools, Elementary School Students, Grade 1
Peer reviewed Peer reviewed
Direct linkDirect link
Onah, Daniel F. O.; Pang, Elaine L. L.; Sinclair, Jane E.; Uhomoibhi, James – International Journal of Information and Learning Technology, 2021
Purpose: Massive open online courses (MOOCs) have received wide publicity and many institutions have invested considerable effort in developing, promoting and delivering such courses. However, there are still many unresolved questions relating to MOOCs and their effectiveness in a blended-learning context. One of the major recurring issues raised…
Descriptors: MOOCs, Questionnaires, Learning Strategies, Blended Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Akar, Sacide Guzin Mazman; Altun, Arif – Contemporary Educational Technology, 2017
The purpose of this study is to investigate and conceptualize the ranks of importance of social cognitive variables on university students' computer programming performances. Spatial ability, working memory, self-efficacy, gender, prior knowledge and the universities students attend were taken as variables to be analyzed. The study has been…
Descriptors: Individual Differences, Learning Processes, Programming, Self Efficacy