NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Leu, M. C.; Mahajan, R. – CoED, 1984
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Descriptors: Computer Graphics, Computer Programs, Computer Simulation, Engineering Education
Peer reviewed Peer reviewed
Fields, Carl – CoED, 1984
A brief package of subroutines (which can be typed in 15 minutes) enables a standard Apple II Plus, IIc, or IIe microcomputer to simulate a pen-plotter. Techniques for using this package in introductory engineering graphics courses are described. A sample program (which draws an oblique line) containing the subroutines is included. (Author/JN)
Descriptors: Computer Graphics, Computer Simulation, Computer Software, Engineering Education
Peer reviewed Peer reviewed
Jeswiet, J.; Mulvenna, C. A. – CoED, 1985
To evaluate the use of computer graphics for illustrating kinematics in an undergraduate course, a student project of mechanism simulation and analysis was carried out using a recently acquired workstation. This project is described. (JN)
Descriptors: Computer Graphics, Computer Simulation, Engineering, Engineering Education
Peer reviewed Peer reviewed
Smith, Donald A.; Jacquot, Raymond G. – CoED, 1984
Presents algorithms for the simulation and motion display of the three basic kinematic devices: (1) four bar linkages; (2) the slider crank; and (3) the inverted slider crank mechanisms. The algorithms were implemented on a Commodore-VIC 20 microcomputer system with 6500 bytes of available memory. (Author/JN)
Descriptors: Algorithms, Computer Graphics, Computer Simulation, Computer Software
Peer reviewed Peer reviewed
Whitman, David L.; Terry, Ronald E. – CoED, 1985
Demonstrating petroleum engineering concepts in undergraduate laboratories often requires expensive and time-consuming experiments. To eliminate these problems, a graphical simulation technique was developed for junior-level laboratories which illustrate vapor-liquid equilibrium and the use of mathematical modeling. A description of this…
Descriptors: Computer Graphics, Computer Simulation, Computer Software, Engineering