NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Stanford Achievement Tests1
What Works Clearinghouse Rating
Showing 1 to 15 of 445 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sarah Alturkustani; Ashley Durfee; Olivia F. O'Leary; Siobhain M. O'Mahony; Conor O'Mahony; Mutahira Lone; Andreea Factor – Anatomical Sciences Education, 2025
Anatomy is fundamental to medical disciplines. However, its complexity can be challenging to learners, and traditional anatomy teaching may not be easily accessible. Virtual Reality has the potential to supplement anatomy education, but its effectiveness depends on students' willingness to accept it. This study aimed to measure students'…
Descriptors: Student Attitudes, Computer Simulation, Anatomy, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Maurizio Costabile; Connie Caruso; Chris Della Vedova; Sheree Bailey; Layla Mahdi – Advances in Physiology Education, 2025
Science, technology, engineering, and mathematics (STEM) students are typically taught content delivered didactically and closely aligned with the laboratory demonstration of concepts, which facilitates the development of experimental skills. Because of the volume of content delivered across multiple courses, student cognitive abilities can be…
Descriptors: Computer Simulation, Computer Software, Learning Processes, Laboratory Training
Peer reviewed Peer reviewed
Direct linkDirect link
Tyler G. Harvey; Delphine Dean – Biomedical Engineering Education, 2025
Challenge: While hands-on laboratory experiences are an important component of biomedical engineering curricula, many of the topics which would often benefit most from these experiences are often too time-, space-, and resource-intensive to incorporate into laboratory classes. One such topic is electrophysiology, where phenomena are hard to…
Descriptors: Discovery Learning, Computer Uses in Education, Computer Simulation, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Gianmarc Grazioli; Adam Ingwerson; David Santiago Jr.; Patrick Regan; Heekun Cho – Journal of Chemical Education, 2023
Computational chemistry instructional activities are often based around students running chemical simulations via a graphical user interface (GUI). GUI-based activities offer many advantages, as they enable students to run chemical simulations with a few mouse clicks. Although these activities are excellent for introducing students to the…
Descriptors: Computation, Chemistry, Teaching Methods, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Morgan I. D. Johnson; Lavinia Mbongo; Amy J. Managh – Journal of Chemical Education, 2023
An ICP-MS simulation was developed to support the teaching of inductively coupled plasma-mass spectrometry. The app enables students to conduct the quantification of selenium in a nutritional supplement, monitor the uptake of metallodrugs by cells, and perform qualitative analysis of gunshot residue. The experiments teach a range of analytical…
Descriptors: Computer Software, Undergraduate Study, College Science, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Zuhan Liu; Lili Wang – Education and Information Technologies, 2025
With the continuous development of embodied cognition theory and virtual reality (VR) technology, its application in teaching has been paid more and more attention by researchers. However, there are still few practical studies on the combination of VR technology and embodied learning. Starting from literature research, the paper analyzes the…
Descriptors: Cognitive Processes, Computer Simulation, Human Body, Experiential Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Vanessa Ayer Miller; Timothy Marks; Dorothea K. Thompson – Journal of Microbiology & Biology Education, 2025
Interest in virtual laboratory simulations as a pedagogical tool continues to grow, given the advantages of flexibility, scalability, technology integration, and interactive visualizations. We developed a laboratory model that integrates virtual lab simulations (VLS) and traditional in-person (IP) lab experiences for targeted skill development. In…
Descriptors: Microbiology, Science Achievement, Student Attitudes, Blended Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Tapia Mattar, Valeria; Gavilán-Arriazu, Edgardo Maximiliano; Rodriguez, Sergio Antonio – Journal of Chemical Education, 2022
Understanding the physicochemical properties of organic compounds with potential biological uses is central in current research topics. Thus, students must pursue the integration of different fields of chemistry to obtain and understand the physicochemical parameters that characterize the mechanism of action of key organics compounds. This…
Descriptors: Computer Simulation, Organic Chemistry, Computer Uses in Education, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Yanying Chen; Yaoxin Tan; Yuhui Wang – Interactive Learning Environments, 2024
We designed a microbial science popularization product based on virtual reality technology, "Micro World -- Exploring the Microbial Kingdom," and conducted usability tests. Participants used head-mounted VR glasses to experience virtual scenarios teaching microbiological knowledge. The product's user experience was evaluated through a…
Descriptors: Computer Simulation, Science Education, Microbiology, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Jingjing Qiu; Anneke Moeller; Janet Zhen; Hansen Yang; Lily Din; Nicole Adelstein – Journal of Chemical Education, 2023
An integrated inorganic chemistry laboratory experience focusing on heterogeneous electrocatalysis with nickel (Ni)- and cobalt (Co)-based electrocatalysts is designed for upper-division, major-level chemistry students. In this laboratory, students will be guided through the fabrication of an indium tin oxide (ITO)-coated glass working electrode,…
Descriptors: Programming Languages, Computer Software, Computer Simulation, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Federico De Lorenzis; Alessandro Visconti; Simone Restivo; Francesca Mazzini; Serena Esposito; Silvia Fraterrigo Garofalo; Luca Marmo; Debora Fino; Fabrizio Lamberti – Smart Learning Environments, 2024
The use of Virtual Reality (VR) in education is getting more and more common, especially when hands-on learning experiences have to be delivered. With VR it becomes possible, e.g., to simulate dangerous or costly procedures that could hardly be implemented in real settings. However, engaging large classes in immersive laboratory activities may be…
Descriptors: Computer Simulation, Cooperative Learning, Chemistry, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Dhanush S. Bejjarapu; Yize Chen; Jiyan Xu; Eric Shaffer; Nishant Garg – Journal of Chemical Education, 2024
Recent advancements in computer graphics and hardware have driven the resurgence of virtual reality (VR). Past literature has reported the use of VR in education, especially for teaching spatially complex concepts. However, there are limited data available on the precise role of VR game design elements. In this study, we introduce a new VR game,…
Descriptors: Physical Sciences, Chemistry, Computer Simulation, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Hua, Amy K.; Lakey, Pascale S. J.; Shiraiwa, Manabu – Journal of Chemical Education, 2022
This paper presents MATLAB user interfaces for two multiphase kinetic models: the kinetic double-layer model of aerosol surface chemistry and gas--particle interactions (K2-SURF) and the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). Each interface has simple and user-friendly features that allow undergraduate and…
Descriptors: Chemistry, Science Instruction, Computer Interfaces, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Song; Sung, Rou-Jia; Reinholz, Daniel L.; Bussey, Thomas J. – Journal of Research in Science Teaching, 2023
The use of two-dimensional images to teach students about three-dimensional molecules continues to be a prevalent issue in many classrooms. As affordable visualization technologies continue to advance, there has been an increasing interest to utilize novel technology, such as augmented reality (AR), in the development of molecular visualization…
Descriptors: Science Instruction, Visual Aids, Educational Technology, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Wolf, Mark E.; Norris, J. Widener; Fynewever, Herb; Turney, Justin M.; Schaefer, Henry F., III – Journal of Chemical Education, 2022
Over the past half century, computational chemistry has evolved from a niche field to a ubiquitous pillar of modern chemical research. Driven by the increased demand for computational chemistry in research settings, the undergraduate curriculum has evolved alongside to ensure that students are well-equipped for modern research. Toward this end,…
Descriptors: Science Instruction, Science Laboratories, Chemistry, Computer Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  30