NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)5
Education Level
Higher Education1
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bonett, Douglas G. – Journal of Educational and Behavioral Statistics, 2015
Paired-samples designs are used frequently in educational and behavioral research. In applications where the response variable is quantitative, researchers are encouraged to supplement the results of a paired-samples t-test with a confidence interval (CI) for a mean difference or a standardized mean difference. Six CIs for standardized mean…
Descriptors: Educational Research, Sample Size, Statistical Analysis, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Luh, Wei-Ming; Guo, Jiin-Huarng – Journal of Experimental Education, 2011
Sample size determination is an important issue in planning research. In the context of one-way fixed-effect analysis of variance, the conventional sample size formula cannot be applied for the heterogeneous variance cases. This study discusses the sample size requirement for the Welch test in the one-way fixed-effect analysis of variance with…
Descriptors: Sample Size, Monte Carlo Methods, Statistical Analysis, Heterogeneous Grouping
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Shutler, P. M. E.; Martinez, J. C.; Springham, S. V. – European Journal of Physics, 2007
The Enskog factor [chi] plays a central role in the theory of dense gases, quantifying how the finite size of molecules causes many physical quantities, such as the equation of state, the mean free path, and the diffusion coefficient, to deviate from those of an ideal gas. We suggest an intuitive but rigorous derivation of this fact by showing how…
Descriptors: Physics, Scientific Concepts, Monte Carlo Methods, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez – European Journal of Physics, 2008
This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…
Descriptors: Plastics, Monte Carlo Methods, Computer Simulation, Chemistry
Peer reviewed Peer reviewed
Alexander, Ralph A.; Govern, Diane M. – Journal of Educational Statistics, 1994
A new approximation is proposed for testing the equality of "k" independent means in the face of heterogeneity of variance. Monte Carlo simulations show that the new procedure has nearly nominal Type I error rates and Type II error rates that are close to those produced by James's second-order approximation. (SLD)
Descriptors: Analysis of Variance, Computer Simulation, Equations (Mathematics), Monte Carlo Methods
Peer reviewed Peer reviewed
Snijders, Tom A. B. – Psychometrika, 1991
A complete enumeration method and a Monte Carlo method are presented to calculate the probability distribution of arbitrary statistics of adjacency matrices when these matrices have the uniform distribution conditional on given row and column sums, and possibly on a given set of structural zeros. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Mathematical Models, Matrices
Peer reviewed Peer reviewed
Hanges, Paul J.; And Others – Educational and Psychological Measurement, 1991
Whether it is possible to develop a classification function that identifies the underlying range restriction from sample information alone was investigated in a simulation. Results indicate that such a function is possible. The procedure was found to be relatively accurate, robust, and powerful. (SLD)
Descriptors: Classification, Computer Simulation, Equations (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Brown, R. L. – Educational and Psychological Measurement, 1991
The effect that collapsing ordered polytomous variable scales has on structural equation measurement model parameter estimates was examined. Four parameter estimation procedures were investigated in a Monte Carlo study. Collapsing categories in ordered polytomous variables had little effect when latent projection procedures were used. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Lautenschlager, Gary J.; And Others – Educational and Psychological Measurement, 1989
A method for estimating the first eigenvalue of random data correlation matrices is reported, and its precision is demonstrated via comparison to the method of S. J. Allen and R. Hubbard (1986). Data generated in Monte Carlo simulations with 10 sample sizes reaching up to 1,000 were used. (SLD)
Descriptors: Computer Simulation, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Ichikawa, Masanori – Psychometrika, 1992
Asymptotic distributions of the estimators of communalities are derived for the maximum likelihood method in factor analysis. It is shown that equating the asymptotic standard error of the communality estimate to the unique variance estimate is not correct for the unstandardized case. Monte Carlo simulations illustrate the study. (SLD)
Descriptors: Computer Simulation, Equations (Mathematics), Estimation (Mathematics), Factor Analysis
Peer reviewed Peer reviewed
Tracz, Susan M.; And Others – Educational and Psychological Measurement, 1992
Effects of violating the independence assumption when combining correlation coefficients in a meta-analysis were studied. This Monte-Carlo simulation varied sample size, predictor number, population intercorrelation among predictors, and population correlation between predictors and criterion. Combining statistics from nonindependent data in a…
Descriptors: Computer Simulation, Correlation, Equations (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Bissett, Randall; Schneider, Bruce – Psychometrika, 1991
The algorithm developed by B. A. Schneider (1980) for analysis of paired comparisons of psychological intervals is replaced by one proposed by R. M. Johnson. Monte Carlo simulations of pairwise dissimilarities and pairwise conjoint effects show that Johnson's algorithm can provide good metric recovery. (SLD)
Descriptors: Algorithms, Comparative Analysis, Computer Simulation, Equations (Mathematics)
Peer reviewed Peer reviewed
Nandakumar, Ratna – Journal of Educational Measurement, 1991
A statistical method, W. F. Stout's statistical test of essential unidimensionality (1990), for exploring the lack of unidimensionality in test data was studied using Monte Carlo simulations. The statistical procedure is a hypothesis test of whether the essential dimensionality is one or exceeds one, regardless of the traditional dimensionality.…
Descriptors: Ability, Achievement Tests, Computer Simulation, Equations (Mathematics)
Peer reviewed Peer reviewed
Schweizer, Karl – Multivariate Behavioral Research, 1991
A mathematical formula is introduced for the effect of integrating data. A method is then derived to eliminate the effect from correlations of variables, including mean composites, thus allowing for a clustering algorithm that requires allocation of variables according to the magnitude of their correlations. Examples illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Cluster Analysis, Computer Simulation
Previous Page | Next Page ยป
Pages: 1  |  2  |  3