NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Geetika Ail; Frances Freer; Chui Shan Chan; Melissa Jones; John Broad; Gian Paulo Canale; Pedro Elston; Jessica Leeney; Paula Vickerton – Anatomical Sciences Education, 2024
Immersive virtual reality (i-VR) is a powerful tool that can be used to explore virtual models in three dimensions. It could therefore be a valuable tool to supplement anatomical teaching by providing opportunities to explore spatial anatomical relationships in a virtual environment. However, there is a lack of consensus in the literature as to…
Descriptors: Computer Simulation, Models, Anatomy, Premedical Students
Peer reviewed Peer reviewed
Direct linkDirect link
Krause, Kayla J.; Mullins, Drew D.; Kist, Madison N.; Goldman, Evan M. – Anatomical Sciences Education, 2023
Virtual reality (VR) is an increasingly available resource with numerous applications to medical education, and as a teaching tool has been widely validated in the literature. Photogrammetry, the process of overlapping two-dimensional (2D) photographic images of three-dimensional (3D) objects to create a 3D image or "model," can be used…
Descriptors: Computer Simulation, Photography, Models, Medical Education
Peer reviewed Peer reviewed
Direct linkDirect link
Varun Shenoy; Arjun Kumar Ghimire; Chaya Gopalan – Advances in Physiology Education, 2024
Human anatomy education serves as a gateway for entering the intricacies of health science. Human cadavers have been the gold standard for learning regional and gross anatomy. However, increasing barriers in acquisition, maintenance, and longevity have pushed anatomy education toward technology-based alternatives such as the Anatomage Table (AT),…
Descriptors: Anatomy, Human Body, Computer Simulation, Allied Health Occupations Education
Peer reviewed Peer reviewed
Direct linkDirect link
Henrik Brun; Matthias Lippert; Thomas Langø; Juan Sanchez-Margallo; Francisco Sanchez-Margallo; Ole Jakob Elle – Anatomical Sciences Education, 2025
Learning cardiac morphology largely involves spatial abilities and studies indicate benefits from innovative 3D visualization technologies that speed up and increase the learning output. Studies comparing these teaching tools and their educational output are rare and few studies include complex congenital heart defects. This study compared the…
Descriptors: Anatomy, Human Body, Spatial Ability, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, David Gareth – Anatomical Sciences Education, 2023
Concerns have recently been expressed about the continuing availability of human bones from India, obtained originally for educational purposes but lacking the requisite informed consent that would be expected today. More generally, a broader claim is being made, namely, that the practice of using any unconsented bones in educational settings is…
Descriptors: Anatomy, Human Body, Ethics, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Vandenbossche, Vicky; Van de Velde, Joris; Avet, Stind; Willaert, Wouter; Soltvedt, Stian; Smit, Noeska; Audenaert, Emmanuel – Anatomical Sciences Education, 2022
High-fidelity anatomical models can be produced with three-dimensional (3D) scanning techniques and as such be digitally preserved, archived, and subsequently rendered through various media. Here, a novel methodology--digital body preservation--is presented for combining and matching scan geometry with radiographic imaging. The technique…
Descriptors: Anatomy, Computer Software, Computer Simulation, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Irene Neri; Laura Cercenelli; Massimo Marcuccio; Simone Lodi; Foteini-Dionysia Koufi; Antonietta Fazio; Maria Vittoria Marvi; Emanuela Marcelli; Anna Maria Billi; Alessandra Ruggeri; Achille Tarsitano; Lucia Manzoli; Giovanni Badiali; Stefano Ratti – Anatomical Sciences Education, 2024
Anatomical education is pivotal for medical students, and innovative technologies like augmented reality (AR) are transforming the field. This study aimed to enhance the interactive features of the "AEducAR" prototype, an AR tool developed by the University of Bologna, and explore its impact on human anatomy learning process in 130…
Descriptors: Anatomy, Medical Education, Human Body, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Nan Zhang; Hongkai Wang; Tianqi Huang; Xinran Zhang; Hongen Liao – IEEE Transactions on Learning Technologies, 2024
Trunk anatomy education is critical in the training of the surgeon. Most trunk anatomy education systems use a personal or synthetic anatomical model. It remains difficult to obtain appropriate population anatomy information and create individualized anatomy customization based on a quantity of diverse data. Furthermore, the naked-eye virtual…
Descriptors: Computer Simulation, Simulated Environment, Human Body, Anatomy
Peer reviewed Peer reviewed
Direct linkDirect link
Samar Thabet Jallad – Anatomical Sciences Education, 2024
Technological developments have significantly impacted various aspects of life, most notably healthcare and education. A nursing education shift was required to prepare digital generation. Consequently, nurse educators must adopt innovative approaches to teaching and learning, like incorporating immersive virtual reality (VR) into human anatomy…
Descriptors: Experiential Learning, Computer Simulation, Computer Oriented Programs, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Duraes, Martha; Akkari, Mohamed; Jeandel, Clément; Moreno, Benjamin; Subsol, Gérard; Duflos, Claire; Captier, Guillaume – Anatomical Sciences Education, 2022
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was…
Descriptors: Medical Students, Medical Education, Anatomy, Laboratory Procedures
Peer reviewed Peer reviewed
Direct linkDirect link
McBain, Kimberly; Chen, Liang; Lee, Angela; O'Brien, Jeremy; Ventura, Nicole M.; Noël, Geoffroy P. J. C. – Anatomical Sciences Education, 2023
Augmented reality (AR) has recently been utilized as an integrative teaching tool in medical curricula given its ability to view virtual objects while interacting with the physical environment. The evidence for AR in medical training, however, is limited. For this reason, the purpose of this mixed method study was to evaluate the implementation of…
Descriptors: Donors, Human Body, Anatomy, Computer Simulation
Abrams, Kathryn Mey – ProQuest LLC, 2023
Individuals with disabilities have been less involved in school activities than their same age peers and this includes career preparation in science and math (Eriksson et al., 2007; Agran et al., 2020; Jackson et al., 2022). Specifically, individuals with intellectual disabilities (ID) have been underrepresented in science education (Lee, 2011)…
Descriptors: Students with Disabilities, Intellectual Disability, Scientific Concepts, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Dreimane, Santa; Daniela, Linda – Technology, Knowledge and Learning, 2021
The use of different technologies and technological solutions for learning purposes is no longer a novelty in the educational environment. Digital teaching materials are being developed that can be used both in classroom activities and for providing students with opportunities for independent learning. However, alongside these materials, there are…
Descriptors: Computer Simulation, Electronic Learning, Anatomy, Human Body
Peer reviewed Peer reviewed
Direct linkDirect link
Oliveira, André de Sá Braga; Leonel, Luciano César P. C.; LaHood, Edward R.; Hallak, Hana; Link, Michael J.; Maleszewski, Joseph J.; Pinheiro-Neto, Carlos D.; Morris, Jonathan M.; Peris-Celda, Maria – Anatomical Sciences Education, 2023
Hands-on dissections using cadaveric tissues for neuroanatomical education are not easily available in many educational institutions due to financial, safety, and ethical factors. Supplementary pedagogical tools, for instance, 3D models of anatomical specimens acquired with photogrammetry are an efficient alternative to democratize the 3D…
Descriptors: Guidelines, Anatomy, Computer Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Katie Abrams; Donald McMahon; Holly Whittenburg; Lauren Bruno; Jonah Firestone – Journal of Special Education Technology, 2024
Individuals with disabilities have been less involved in school activities than their peers of the same age and this includes career preparation in science and math (Agran et al., 2019; Eriksson et al., 2007; Jackson et al., 2022). Students with disabilities often lack access to facilities, programs, and equipment, and acceptance by educators,…
Descriptors: Students with Disabilities, Intellectual Disability, Developmental Disabilities, Computer Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4