NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Debora Lui; Deborah A. Fields; Yasmin B. Kafai – Cognition and Instruction, 2024
Debugging (or troubleshooting) provides a rich context to foster problem-solving. Yet, while we know much about some problems and strategies that novices face in programming on-screen, we know far less about debugging and troubleshooting in the context of physical computing, where coding issues may overlap with materially embedded problems. In…
Descriptors: Grade 9, STEM Education, Troubleshooting, Public Schools
Peer reviewed Peer reviewed
Direct linkDirect link
David DeLiema; Jeffrey K. Bye; Vijay Marupudi – ACM Transactions on Computing Education, 2024
Learning to respond to a computer program that is not working as intended is often characterized as finding a singular bug causing a singular problem. This framing underemphasizes the wide range of ways that students and teachers could notice discrepancies from their intention, propose causes of those discrepancies, and implement interventions.…
Descriptors: Computer Software, Troubleshooting, Intention, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Martínez-Zarzuelo, Angélica; Roanes-Lozano, Eugenio; Fernández-Díaz, José – EURASIA Journal of Mathematics, Science & Technology Education, 2016
Sequencing contents is of great importance for instructional design within the teaching planning processes. We believe that it is key for a meaningful learning. Therefore, we propose to formally establish a partial order relation among the contents. We have chosen the binary relation "to be a prerequisite" for that purpose. We have…
Descriptors: Troubleshooting, Mathematics, Mathematics Instruction, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kolikant, Y. Ben-David; Mussai, M. – Computer Science Education, 2008
We studied students' conceptions of correctness and their influence on students' correctness-related practices by examining how 159 students had analyzed the correctness of error-free and erroneous algorithms and by interviewing seven students regarding their work. We found that students conceptualized program correctness as the sum of the…
Descriptors: Misconceptions, Computer Science Education, Science Instruction, Programming