Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
Grantee Submission | 10 |
Author
Zhiyong Zhang | 3 |
Goodrich, Ben | 2 |
Jeevan Chapagain | 2 |
Priti Oli | 2 |
Rabin Banjade | 2 |
Vasile Rus | 2 |
Arthur C. Graesser | 1 |
Arun-Balajiee… | 1 |
Austin Wyman | 1 |
Benjamin D. Nye | 1 |
Betancourt, Michael | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 4 |
Reports - Descriptive | 3 |
Speeches/Meeting Papers | 3 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 2 |
Early Childhood Education | 1 |
Grade 2 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Flesch Reading Ease Formula | 1 |
Measures of Academic Progress | 1 |
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |

Priti Oli; Rabin Banjade; Jeevan Chapagain; Vasile Rus – Grantee Submission, 2023
This paper systematically explores how Large Language Models (LLMs) generate explanations of code examples of the type used in intro-to-programming courses. As we show, the nature of code explanations generated by LLMs varies considerably based on the wording of the prompt, the target code examples being explained, the programming language, the…
Descriptors: Computational Linguistics, Programming, Computer Science Education, Programming Languages
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
In psychology, researchers are often interested in testing hypotheses about mediation, such as testing the presence of a mediation effect of a treatment (e.g., intervention assignment) on an outcome via a mediator. An increasingly popular approach to testing hypotheses is the Bayesian testing approach with Bayes factors (BFs). Despite the growing…
Descriptors: Sample Size, Bayesian Statistics, Programming Languages, Simulation

Arun-Balajiee Lekshmi-Narayanan; Priti Oli; Jeevan Chapagain; Mohammad Hassany; Rabin Banjade; Vasile Rus – Grantee Submission, 2024
Worked examples, which present an explained code for solving typical programming problems are among the most popular types of learning content in programming classes. Most approaches and tools for presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have time to provide…
Descriptors: Coding, Computer Science Education, Computational Linguistics, Artificial Intelligence
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Zhanxia Yang; Patricia Moore Shaffer; Courtney Hagan; Parastu Dubash; Marina Bers – Grantee Submission, 2023
The aim of this study was to explore how the Coding as Another Language using ScratchJr (CAL-ScratchJr) curriculum, developed by Boston College's DevTech Research Group utilizing the ScratchJr app, impacted second grade students' computational thinking, coding skills, and reading comprehension. To accomplish this, the research team randomly…
Descriptors: Coding, Programming Languages, Computer Science Education, School Districts
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Benjamin D. Nye; Arthur C. Graesser; Xiangen Hu – Grantee Submission, 2014
AutoTutor is a natural language tutoring system that has produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). In this paper, we review the development, key research findings, and systems that have evolved from AutoTutor. First, the rationale for developing AutoTutor is outlined and the advantages…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Software, Artificial Intelligence