NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jorge N. Tendeiro; Rink Hoekstra; Tsz Keung Wong; Henk A. L. Kiers – Teaching Statistics: An International Journal for Teachers, 2025
Most researchers receive formal training in frequentist statistics during their undergraduate studies. In particular, hypothesis testing is usually rooted on the null hypothesis significance testing paradigm and its p-value. Null hypothesis Bayesian testing and its so-called Bayes factor are now becoming increasingly popular. Although the Bayes…
Descriptors: Statistics Education, Teaching Methods, Programming Languages, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Lijuan Wang – Grantee Submission, 2024
In psychology, researchers are often interested in testing hypotheses about mediation, such as testing the presence of a mediation effect of a treatment (e.g., intervention assignment) on an outcome via a mediator. An increasingly popular approach to testing hypotheses is the Bayesian testing approach with Bayes factors (BFs). Despite the growing…
Descriptors: Sample Size, Bayesian Statistics, Programming Languages, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tan, Teck Kiang – Practical Assessment, Research & Evaluation, 2022
Power analysis based on the analytical t-test is an important aspect of a research study to determine the sample size required to detect the effect for the comparison of two means. The current paper presents a reader-friendly procedure for carrying out the t-test power analysis using the various R add-on packages. While there is a growing of R…
Descriptors: Programming Languages, Sample Size, Bayesian Statistics, Intervention
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Teck Kiang Tan – Practical Assessment, Research & Evaluation, 2024
The procedures of carrying out factorial invariance to validate a construct were well developed to ensure the reliability of the construct that can be used across groups for comparison and analysis, yet mainly restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian approach for carrying out the Bayesian…
Descriptors: Bayesian Statistics, Factor Analysis, Programming Languages, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Albert, Jim; Hu, Jingchen – Journal of Statistics Education, 2020
Bayesian statistics has gained great momentum since the computational developments of the 1990s. Gradually, advances in Bayesian methodology and software have made Bayesian techniques much more accessible to applied statisticians and, in turn, have potentially transformed Bayesian education at the undergraduate level. This article provides an…
Descriptors: Bayesian Statistics, Computation, Statistics Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hu, Jingchen – Journal of Statistics Education, 2020
We propose a semester-long Bayesian statistics course for undergraduate students with calculus and probability background. We cultivate students' Bayesian thinking with Bayesian methods applied to real data problems. We leverage modern Bayesian computing techniques not only for implementing Bayesian methods, but also to deepen students'…
Descriptors: Bayesian Statistics, Statistics Education, Undergraduate Students, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Au, Chi Hang – Measurement: Interdisciplinary Research and Perspectives, 2018
Stan is a flexible probabilistic programming language providing full Bayesian inference through Hamiltonian Monte Carlo algorithms. The benefits of Hamiltonian Monte Carlo include improved efficiency and faster inference, when compared to other MCMC software implementations. Users can interface with Stan through a variety of computing…
Descriptors: Item Response Theory, Computer Software Evaluation, Computer Software, Programming Languages
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Azevedo, Ana, Ed.; Azevedo, José, Ed. – IGI Global, 2019
E-assessments of students profoundly influence their motivation and play a key role in the educational process. Adapting assessment techniques to current technological advancements allows for effective pedagogical practices, learning processes, and student engagement. The "Handbook of Research on E-Assessment in Higher Education"…
Descriptors: Higher Education, Computer Assisted Testing, Multiple Choice Tests, Guides
Peer reviewed Peer reviewed
Direct linkDirect link
Haas, Timothy C. – International Journal of Distance Education Technologies, 2016
Before massive numbers of students can take online courses for college credit, the challenges of providing tutoring support, answers to student-posed questions, and the control of cheating will need to be addressed. These challenges are taken up here by developing an online course delivery system that runs in a cluster computing environment and is…
Descriptors: Online Courses, Educational Technology, Technology Uses in Education, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Colace, Francesco; De Santo, Massimo; Gaeta, Matteo – Interactive Technology and Smart Education, 2009
Purpose: The development of adaptable and intelligent educational systems is widely considered one of the great challenges in scientific research. Among key elements for building advanced training systems, an important role is played by methodologies chosen for knowledge representation. In this scenario, the introduction of ontology formalism can…
Descriptors: Electronic Learning, Knowledge Representation, Bayesian Statistics, Mathematics
Previous Page | Next Page »
Pages: 1  |  2