NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacqueline Zammit – Technology in Language Teaching & Learning, 2024
The Chat Generative Pretrained Transformer (ChatGPT) is a state-of-the-art artificial intelligence (AI) language model developed by OpenAI. It employs advanced deep-learning algorithms to generate text that mimics human language. ChatGPT, launched on November 30, 2022, has rapidly gained widespread recognition. Its influence on the future of…
Descriptors: Artificial Intelligence, Computer Software, Synchronous Communication, Second Language Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jia, Qinjin; Young, Mitchell; Xiao, Yunkai; Cui, Jialin; Liu, Chengyuan; Rashid, Parvez; Gehringer, Edward – International Educational Data Mining Society, 2022
Providing timely feedback is crucial in promoting academic achievement and student success. However, for multifarious reasons (e.g., limited teaching resources), feedback often arrives too late for learners to act on the feedback and improve learning. Thus, automated feedback systems have emerged to tackle educational tasks in various domains,…
Descriptors: Student Projects, Feedback (Response), Natural Language Processing, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Waad Alsaweed; Saad Aljebreen – International Journal of Computer-Assisted Language Learning and Teaching, 2024
Artificial intelligence revolution becomes a trend in most aspects of life. ChatGPT, an AI chatbot, has impacted various domains, including education and language learning. Enhancing writing abilities of ESL learners requires frequent writing practice and feedback, which ChatGPT can easily provide. However, ChatGPT's accuracy in identifying and…
Descriptors: Error Correction, Writing Instruction, Grammar, Morphemes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Silvia García-Méndez; Francisco de Arriba-Pérez; Francisco J. González-Castaño – International Association for Development of the Information Society, 2023
Mobile learning or mLearning has become an essential tool in many fields in this digital era, among the ones educational training deserves special attention, that is, applied to both basic and higher education towards active, flexible, effective high-quality and continuous learning. However, despite the advances in Natural Language Processing…
Descriptors: Higher Education, Artificial Intelligence, Computer Software, Usability
Shabnam Behzad – ProQuest LLC, 2024
Second language learners constitute a significant and expanding portion of the global population and there is a growing demand for tools that facilitate language learning and instruction across various levels and in different countries. The development of large language models (LLMs) has brought about a significant impact on the domains of natural…
Descriptors: Artificial Intelligence, Computer Software, Computational Linguistics, Second Language Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xiaoling Bai; Nur Rasyidah Mohd Nordin – Eurasian Journal of Applied Linguistics, 2025
A perfect writing skill has been deemed instrumental to achieving competence in EFL, yet it is considered one of the most impressive learning domains. This study investigates the impact of human-AI collaborative feedback on the writing proficiency of EFL students. It examines key teaching domains, including the teaching environment, teacher…
Descriptors: Artificial Intelligence, Feedback (Response), Evaluators, Writing Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Chengyuan; Cui, Jialin; Shang, Ruixuan; Xiao, Yunkai; Jia, Qinjin; Gehringer, Edward – International Educational Data Mining Society, 2022
An online peer-assessment system typically allows students to give textual feedback to their peers, with the goal of helping the peers improve their work. The amount of help that students receive is highly dependent on the quality of the reviews. Previous studies have investigated using machine learning to detect characteristics of reviews (e.g.,…
Descriptors: Peer Evaluation, Feedback (Response), Computer Mediated Communication, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ranalli, Jim; Yamashita, Taichi – Language Learning & Technology, 2022
To the extent automated written corrective feedback (AWCF) tools such as Grammarly are based on sophisticated error-correction technologies, such as machine-learning techniques, they have the potential to find and correct more common L2 error types than simpler spelling and grammar checkers such as the one included in Microsoft Word (technically…
Descriptors: Error Correction, Feedback (Response), Computer Software, Second Language Learning
Nicula, Bogdan; Dascalu, Mihai; Newton, Natalie N.; Orcutt, Ellen; McNamara, Danielle S. – Grantee Submission, 2021
Learning to paraphrase supports both writing ability and reading comprehension, particularly for less skilled learners. As such, educational tools that integrate automated evaluations of paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more efficiently and effectively. Paraphrase identification is a popular…
Descriptors: Computational Linguistics, Feedback (Response), Classification, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Ramachandran, Lakshmi; Gehringer, Edward F.; Yadav, Ravi K. – International Journal of Artificial Intelligence in Education, 2017
A "review" is textual feedback provided by a reviewer to the author of a submitted version. Peer reviews are used in academic publishing and in education to assess student work. While reviews are important to e-commerce sites like Amazon and e-bay, which use them to assess the quality of products and services, our work focuses on…
Descriptors: Natural Language Processing, Peer Evaluation, Educational Quality, Meta Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stone, Cathlyn; Donnelly, Patrick J.; Dale, Meghan; Capello, Sarah; Kelly, Sean; Godley, Amanda; D'Mello, Sidney K. – International Educational Data Mining Society, 2019
We examine the ability of supervised text classification models to identify several discourse properties from teachers' speech with an eye for providing teachers with meaningful automated feedback about the quality of their classroom discourse. We collected audio recordings from 28 teachers from 10 schools in 164 authentic classroom sessions,…
Descriptors: Classification, Classroom Communication, Audio Equipment, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, H.; Magooda, A.; Litman, D.; Correnti, R.; Wang, E.; Matsumura, L. C.; Howe, E.; Quintana, R. – Grantee Submission, 2019
Writing a good essay typically involves students revising an initial paper draft after receiving feedback. We present eRevise, a web-based writing and revising environment that uses natural language processing features generated for rubric-based essay scoring to trigger formative feedback messages regarding students' use of evidence in…
Descriptors: Formative Evaluation, Essays, Writing (Composition), Revision (Written Composition)
Crossley, Scott A.; Kyle, Kristopher; McNamara, Danielle S. – Grantee Submission, 2015
This study investigates the relative efficacy of using linguistic micro-features, the aggregation of such features, and a combination of micro-features and aggregated features in developing automatic essay scoring (AES) models. Although the use of aggregated features is widespread in AES systems (e.g., e-rater; Intellimetric), very little…
Descriptors: Essays, Scoring, Feedback (Response), Writing Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cotos, Elena; Pendar, Nick – CALICO Journal, 2016
This paper reports on the development of an analysis engine for the Research Writing Tutor (RWT), an AWE program designed to provide genre and discipline-specific feedback on the functional units of research article discourse. Unlike traditional NLP-based applications that categorize complete documents, the analyzer categorizes every sentence in…
Descriptors: Discourse Analysis, Classification, Rhetoric, Writing Evaluation
Previous Page | Next Page »
Pages: 1  |  2