Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 8 |
Descriptor
Computer Software | 8 |
Learning Analytics | 8 |
Mathematics Tests | 8 |
Accuracy | 4 |
Comparative Analysis | 4 |
Correlation | 3 |
Data Analysis | 3 |
Prediction | 3 |
Artificial Intelligence | 2 |
Foreign Countries | 2 |
Learning Management Systems | 2 |
More ▼ |
Source
International Educational… | 2 |
Journal of Learning Analytics | 2 |
Acta Didactica Napocensia | 1 |
Grantee Submission | 1 |
Interactive Learning… | 1 |
Journal of Educational Data… | 1 |
Author
Publication Type
Reports - Research | 7 |
Journal Articles | 5 |
Speeches/Meeting Papers | 3 |
Reports - Evaluative | 1 |
Education Level
Middle Schools | 4 |
Junior High Schools | 3 |
Secondary Education | 3 |
Elementary Education | 2 |
Intermediate Grades | 2 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 8 | 1 |
High Schools | 1 |
Audience
Location
Africa | 1 |
Ghana | 1 |
Nigeria | 1 |
South Africa | 1 |
Turkey | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 2 |
What Works Clearinghouse Rating
Hongwen Guo; Matthew S. Johnson; Kadriye Ercikan; Luis Saldivia; Michelle Worthington – Journal of Learning Analytics, 2024
Large-scale assessments play a key role in education: educators and stakeholders need to know what students know and can do, so that they can be prepared for education policies and interventions in teaching and learning. However, a score from the assessment may not be enough--educators need to know why students got low scores, how students engaged…
Descriptors: Artificial Intelligence, Learning Analytics, Learning Management Systems, Measurement
Hanife Merve Erdogan; Nazan Sezen Yüksel – Acta Didactica Napocensia, 2023
The aim of this study is to classify the subjects and skills of middle school mathematics course in the context of MATH Taxonomy and to determine their relations. For this purpose, the questions and answers related to the mathematics subtest of a national exam were analyzed over the answers of 20154 students. The study continued with the analysis…
Descriptors: Mathematics Skills, Taxonomy, Computer Software, Probability
Owen Henkel; Hannah Horne-Robinson; Maria Dyshel; Greg Thompson; Ralph Abboud; Nabil Al Nahin Ch; Baptiste Moreau-Pernet; Kirk Vanacore – Journal of Learning Analytics, 2025
This paper introduces AMMORE, a new dataset of 53,000 math open-response question-answer pairs from Rori, a mathematics learning platform used by middle and high school students in several African countries. Using this dataset, we conducted two experiments to evaluate the use of large language models (LLM) for grading particularly challenging…
Descriptors: Learning Analytics, Learning Management Systems, Mathematics Instruction, Middle School Students
Kam Hong Shum; Samuel Kai Wah Chu; Cheuk Yu Yeung – Interactive Learning Environments, 2023
This study examines the use of data analytics to evaluate students' behaviours during their participation in an online collaborative learning environment called SkyApp. To visualise the learning traits of engagement, emotion and motivation, students' inputs and activity data were captured and quantified for analysis. Experiments were first carried…
Descriptors: Student Behavior, Online Courses, Cooperative Learning, Computer Software
PaaBen, Benjamin; Dywel, Malwina; Fleckenstein, Melanie; Pinkwart, Niels – International Educational Data Mining Society, 2022
Item response theory (IRT) is a popular method to infer student abilities and item difficulties from observed test responses. However, IRT struggles with two challenges: How to map items to skills if multiple skills are present? And how to infer the ability of new students that have not been part of the training data? Inspired by recent advances…
Descriptors: Item Response Theory, Test Items, Item Analysis, Inferences
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Adjei, Seth A.; Botelho, Anthony F.; Heffernan, Neil T. – Grantee Submission, 2016
Prerequisite skill structures have been closely studied in past years leading to many data-intensive methods aimed at refining such structures. While many of these proposed methods have yielded success, defining and refining hierarchies of skill relationships are often difficult tasks. The relationship between skills in a graph could either be…
Descriptors: Prediction, Learning Analytics, Attribution Theory, Prerequisites