Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 22 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 63 |
Descriptor
Computer Software | 68 |
Models | 68 |
Programming Languages | 68 |
Programming | 33 |
Foreign Countries | 21 |
Educational Technology | 19 |
Instructional Design | 19 |
Computer Science Education | 17 |
Computer System Design | 17 |
Teaching Methods | 17 |
Electronic Learning | 15 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 53 |
Reports - Research | 27 |
Reports - Descriptive | 26 |
Dissertations/Theses -… | 8 |
Reports - Evaluative | 7 |
Speeches/Meeting Papers | 6 |
Education Level
Higher Education | 30 |
Postsecondary Education | 27 |
Secondary Education | 6 |
Elementary Education | 4 |
Elementary Secondary Education | 4 |
Adult Education | 2 |
Grade 4 | 1 |
Grade 6 | 1 |
High Schools | 1 |
Audience
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Rosenberg Self Esteem Scale | 1 |
What Works Clearinghouse Rating
Mark W. Isken – INFORMS Transactions on Education, 2025
A staple of many spreadsheet-based management science courses is the use of Excel for activities such as model building, sensitivity analysis, goal seeking, and Monte-Carlo simulation. What might those things look like if carried out using Python? We describe a teaching module in which Python is used to do typical Excel-based modeling and…
Descriptors: Spreadsheets, Models, Programming Languages, Monte Carlo Methods
Liang Kong – International Journal of Mathematical Education in Science and Technology, 2024
The COVID-19 pandemic, like past historical events such as the Vietnam War or 9/11, will shape a generation. Mathematics educators can seize this unprecedented opportunity to teach the principles of mathematical modeling in epidemiology. Compartmental epidemiological models, such as the SIR (susceptible-infected-recovered), are widely used by…
Descriptors: Mathematics Instruction, Teaching Methods, Advanced Courses, Epidemiology
Dorodchi, Mohsen; Dehbozorgi, Nasrin; Fallahian, Mohammadali; Pouriyeh, Seyedamin – Informatics in Education, 2021
Teaching software engineering (SWE) as a core computer science course (ACM, 2013) is a challenging task. The challenge lies in the emphasis on what a large-scale software means, implementing teamwork, and teaching abstraction in software design while simultaneously engaging students into reasonable coding tasks. The abstraction of the system…
Descriptors: Computer Science Education, Computer Software, Teaching Methods, Undergraduate Students
Thakur, Khusbu; Kumar, Vinit – New Review of Academic Librarianship, 2022
A vast amount of published scholarly literature is generated every day. Today, it is one of the biggest challenges for organisations to extract knowledge embedded in published scholarly literature for business and research applications. Application of text mining is gaining popularity among researchers and applications are growing exponentially in…
Descriptors: Information Retrieval, Data Analysis, Research Methodology, Trend Analysis
Andrea Domínguez-Lara; Wulfrano Arturo Luna-Ramírez – International Association for Development of the Information Society, 2022
The automatic code generation is the process of generating source code snippets from a program, i.e., code for generating code. Its importance lies in facilitating software development, particularly important is helping in the implementation of software designs such as engineering diagrams, in such a case, automatic code generation copes with the…
Descriptors: Programming, Coding, Computer Software, Programming Languages
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Kuroki, Masanori – Journal of Economic Education, 2023
As vast amounts of data have become available in business in recent years, the demand for data scientists has been rising. The author of this article provides a tutorial on how one entry-level machine learning competition from Kaggle, an online community for data scientists, can be integrated into an undergraduate econometrics course as an…
Descriptors: Statistics Education, Teaching Methods, Competition, Prediction
Thomas, Paul J.; Patel, Devang; Magana, Alejandra J. – ACM Transactions on Computing Education, 2021
Software modeling is an integral practice for software engineers, especially as the complexity of software solutions increases. Unified Modeling Language (UML) is the industry standard for software modeling. however, it is often used incorrectly and misunderstood by novice software designers. This study is centered around understanding patterns of…
Descriptors: Computer Science Education, Models, Computer Software, Programming Languages
Fleischer, Yannik; Biehler, Rolf; Schulte, Carsten – Statistics Education Research Journal, 2022
This study examines modelling with machine learning. In the context of a yearlong data science course, the study explores how upper secondary students apply machine learning with Jupyter Notebooks and document the modelling process as a computational essay incorporating the different steps of the CRISP-DM cycle. The students' work is based on a…
Descriptors: Statistics Education, Educational Research, Electronic Learning, Secondary School Students
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Thomas, Paul JoseKutty – ProQuest LLC, 2021
Software modeling is an integral practice for software engineers especially as the complexity of software solutions increase. There is precedent in industry to model information systems in terms of functions, structures, and behaviors. While constructing these models, abstraction and systems thinking are employed to determine elements essential to…
Descriptors: Computer Science Education, Programming Languages, Academic Achievement, College Students
Phillips, A. M.; Gouvea, E. J.; Gravel, B. E.; Beachemin, P. -H.; Atherton, T. J. – Physical Review Physics Education Research, 2023
Computation is intertwined with essentially all aspects of physics research and is invaluable for physicists' careers. Despite its disciplinary importance, integration of computation into physics education remains a challenge and, moreover, has tended to be constructed narrowly as a route to solving physics problems. Here, we broaden Physics…
Descriptors: Physics, Science Instruction, Teaching Methods, Models
Dayal, Vikram – International Journal of Mathematical Education in Science and Technology, 2023
Epidemiological models have enhanced relevance because of the COVID-19 pandemic. In this note, we emphasize visual tools that can be part of a learning module geared to teaching the SIR epidemiological model, suitable for advanced undergraduates or beginning graduate students in disciplines where the level of prior mathematical knowledge of…
Descriptors: Biology, Visual Aids, Epidemiology, Science Instruction
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Padgett, R. Noah; Morgan, Grant B. – Measurement: Interdisciplinary Research and Perspectives, 2020
The "extended Rasch modeling" (eRm) package in R provides users with a comprehensive set of tools for Rasch modeling for scale evaluation and general modeling. We provide a brief introduction to Rasch modeling followed by a review of literature that utilizes the eRm package. Then, the key features of the eRm package for scale evaluation…
Descriptors: Computer Software, Programming Languages, Self Esteem, Self Concept Measures