Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 8 |
Descriptor
Computer Peripherals | 8 |
Computer Software | 8 |
Molecular Structure | 8 |
Science Instruction | 6 |
Teaching Methods | 4 |
Visualization | 4 |
Biochemistry | 3 |
Chemistry | 3 |
Printing | 3 |
Technology Uses in Education | 3 |
Computer Simulation | 2 |
More ▼ |
Author
Akinleye, Olukemi P. | 1 |
Berkmen, Melanie B. | 1 |
Castiaux, Andre | 1 |
Dukie, Shailandra | 1 |
E. Eisner | 1 |
Fogarty, Keir H. | 1 |
Griffith, Kaitlyn M. | 1 |
H. Martin | 1 |
Hall, Susan | 1 |
J. K. Klosterman | 1 |
Johnson, Walter H. | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Descriptive | 5 |
Reports - Research | 3 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Accessible 3D Printing: Multicolor Molecular Models From Consumer-Grade, Single Filament 3D Printers
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peterson, Celeste N.; Tavana, Sara Z.; Akinleye, Olukemi P.; Johnson, Walter H.; Berkmen, Melanie B. – Biochemistry and Molecular Biology Education, 2020
Biology and biochemistry students must learn to visualize and comprehend the complex three-dimensional (3D) structures of macromolecules such as proteins or DNA. However, most tools available for teaching biomolecular structures typically operate in two dimensions. Here, we present protocols and pedagogical approaches for using immersive augmented…
Descriptors: Teaching Methods, Molecular Structure, Computer Software, Biochemistry
Lee, Ning Yuan; Tucker-Kellogg, Greg – Biochemistry and Molecular Biology Education, 2020
Understanding macromolecular structures is essential for biology education. Augmented reality (AR) applications have shown promise in science, technology, engineering, and mathematics (STEM) education, but are not widely used for protein visualization. While there are some tools for AR protein visualization, none of them are accessible to the…
Descriptors: Visualization, Molecular Structure, Computer Simulation, STEM Education
Jones, Oliver A. H.; Spencer, Michelle J. S. – Journal of Chemical Education, 2018
Using tangible models to help students visualize chemical structures in three dimensions has been a mainstay of chemistry education for many years. Conventional chemistry modeling kits are, however, limited in the types and accuracy of the molecules, bonds and structures they can be used to build. The recent development of 3D printing technology…
Descriptors: Computer Peripherals, Printing, Chemistry, Molecular Structure
Paukstelis, Paul J. – Journal of Chemical Education, 2018
The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…
Descriptors: Chemistry, Science Instruction, Molecular Structure, Hands on Science
Pinger, Cody W.; Castiaux, Andre; Speed, Savannah; Spence, Dana M. – Journal of Chemical Education, 2018
Plasma protein binding measurements are an important aspect of pharmacology and drug development. Therefore, performing these measurements can provide a valuable and highly practical learning experience for students across many scientific disciplines. Here, we describe the design and characterization of a 3D-printed device capable of performing…
Descriptors: Chemistry, Science Instruction, Computer Peripherals, Pharmacology
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Lohning, Anna E.; Hall, Susan; Dukie, Shailandra – Journal of Chemical Education, 2019
Students often approach biochemistry with a degree of trepidation with many considering it one of the more difficult subjects. This is, in part, due to the necessity of making visual images of submicroscopic concepts. Molecular interactions underpin most biological processes; therefore, mastering these concepts is essential. Understanding the…
Descriptors: Undergraduate Students, College Science, Biochemistry, Computer Peripherals