NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Adam Diamant – INFORMS Transactions on Education, 2024
Managers are increasingly being tasked with overseeing data-driven projects that incorporate prescriptive and predictive models. Furthermore, basic knowledge of the data analytics pipeline is a fundamental requirement in many modern organizations. Given the central importance of analytics in today's business environment, there is a growing demand…
Descriptors: Business Administration Education, Graduate Students, Prediction, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Kuroki, Masanori – Journal of Economic Education, 2023
As vast amounts of data have become available in business in recent years, the demand for data scientists has been rising. The author of this article provides a tutorial on how one entry-level machine learning competition from Kaggle, an online community for data scientists, can be integrated into an undergraduate econometrics course as an…
Descriptors: Statistics Education, Teaching Methods, Competition, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, Elise – Cognition and Instruction, 2022
In this paper, I discuss undergraduate students' engagement in basic Python programming while solving combinatorial problems. Students solved tasks that were designed to involve programming, and they were encouraged to engage in activities of prediction and reflection. I provide data from two paired teaching experiments, and I outline how the task…
Descriptors: Undergraduate Students, Thinking Skills, Prediction, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orr, J. Walker; Russell, Nathaniel – International Educational Data Mining Society, 2021
The assessment of program functionality can generally be accomplished with straight-forward unit tests. However, assessing the design quality of a program is a much more difficult and nuanced problem. Design quality is an important consideration since it affects the readability and maintainability of programs. Assessing design quality and giving…
Descriptors: Programming Languages, Feedback (Response), Units of Study, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Xiaoming; Schwieger, Dana – Information Systems Education Journal, 2023
Rapid advancements and emergent technologies add an additional layer of complexity to preparing computer science and information technology higher education students for entering the post pandemic job market. Knowing and predicting employers' technical skill needs is essential for shaping curriculum development to address the emergent skill gap.…
Descriptors: Network Analysis, Employment Opportunities, Information Technology, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wulandari, Stepani Sisca; Ali, Syaiful – Accounting Education, 2019
Although the eXtensible Business Reporting Language (XBRL) can improve the utilization of accounting information, the acceptance of this technology has been slower than anticipated. Some studies suggest that education can raise awareness of XBRL, thus improving its adoption in a country. This study describes the perspectives of accounting…
Descriptors: Accounting, Computer Software, Foreign Countries, Technology Integration
Peer reviewed Peer reviewed
Direct linkDirect link
Srour, F. Jordan; Karkoulian, Silva – International Journal of Social Research Methodology, 2022
The literature provides multiple measures of diversity along a single demographic dimension, but when it comes to studying the interaction of multiple diversity types (e.g. age, gender, and race), the field of useable measures diminishes. We present the use of decision trees as a machine learning technique to automatically identify the…
Descriptors: Diversity, Decision Making, Artificial Intelligence, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Saito, Tomohiro; Watanobe, Yutaka – International Journal of Distance Education Technologies, 2020
Programming education has recently received increased attention due to growing demand for programming and information technology skills. However, a lack of teaching materials and human resources presents a major challenge to meeting this demand. One way to compensate for a shortage of trained teachers is to use machine learning techniques to…
Descriptors: Programming, Computer Science Education, Electronic Learning, Instructional Materials
Abedtash, Hamed – ProQuest LLC, 2017
Precision medicine refers to the delivering of customized treatment to patients based on their individual characteristics, and aims to reduce adverse events, improve diagnostic methods, and enhance the efficacy of therapies. Among efforts to achieve the goals of precision medicine, researchers have used observational data for developing predictive…
Descriptors: Medical Evaluation, Records (Forms), Patients, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Parkavi, A.; Lakshmi, K.; Srinivasa, K. G. – Educational Research and Reviews, 2017
Data analysis techniques can be used to analyze the pattern of data in different fields. Based on the analysis' results, it is recommended that suggestions be provided to decision making authorities. The data mining techniques can be used in educational domain to improve the outcome of the educational sectors. The authors carried out this research…
Descriptors: Data Analysis, Educational Research, Goodness of Fit, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Price, Thomas; Zhi, Rui; Barnes, Tiffany – International Educational Data Mining Society, 2017
In this paper we present a novel, data-driven algorithm for generating feedback for students on open-ended programming problems. The feedback goes beyond next-step hints, annotating a student's whole program with suggested edits, including code that should be moved or reordered. We also build on existing work to design a methodology for evaluating…
Descriptors: Feedback (Response), Computer Software, Data Analysis, Programming
Previous Page | Next Page ยป
Pages: 1  |  2