Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 14 |
Descriptor
Chemical Engineering | 14 |
Computer Software | 14 |
Scientific Concepts | 14 |
Teaching Methods | 6 |
Engineering Education | 5 |
Computation | 4 |
Concept Formation | 4 |
Educational Technology | 4 |
Equations (Mathematics) | 4 |
Problem Solving | 4 |
Science Experiments | 4 |
More ▼ |
Author
Binous, Housam | 2 |
Anderson, Brian J. | 1 |
AungYong, Lisa | 1 |
Brauner, Neima | 1 |
Cloutier, Robert | 1 |
Cutlip, Michael B. | 1 |
Das, G. | 1 |
Das, P. K. | 1 |
Foley, Greg | 1 |
Gallego-Schmid, Alejandro | 1 |
Ghosh, S. | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Descriptive | 12 |
Reports - Research | 2 |
Education Level
Higher Education | 10 |
Postsecondary Education | 5 |
Location
Alabama | 1 |
South Africa | 1 |
Switzerland | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mingheng Li – Chemical Engineering Education, 2024
Project-based learning (PBL) empowers students to become active learners. In this work computational reverse osmosis (RO) projects developed from industrial case studies and research were implemented in several chemical engineering courses to enhance student learning experience. Students not only gained knowledge in water treatment, but also…
Descriptors: Chemical Engineering, Engineering Education, Learning Experience, Student Projects
Glover, T. Grant; Cloutier, Robert; Gill, Tracy R. – Chemical Engineering Education, 2018
In collaboration with NASA, the Space Grant Foundation, and the eXploration Habitat Academic Challenge, the University of South Alabama developed a systems engineering undergraduate elective that instructs students on the fundamentals of systems engineering and provides the students the opportunity to apply systems and chemical engineering…
Descriptors: Engineering Education, Chemical Engineering, Elective Courses, Scientific Concepts
Gallego-Schmid, Alejandro; Schmidt Rivera, Ximena C.; Stamford, Laurence – International Journal of Sustainability in Higher Education, 2018
Purpose: The implementation of life cycle assessment (LCA) and carbon footprinting represents an important professional and research opportunity for chemical engineers, but this is not broadly reflected in chemical engineering curricula worldwide. This paper aims to present the implementation of a coursework that is easy to apply, free of cost,…
Descriptors: Chemical Engineering, Engineering Education, Employment Potential, Computer Software
Mendez, Sergio; AungYong, Lisa – Chemical Engineering Education, 2014
To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…
Descriptors: Heat, Thermodynamics, Scientific Concepts, Science Education
Foley, Greg – Chemical Engineering Education, 2014
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
Descriptors: Chemical Engineering, College Science, Computation, Scientific Concepts
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard – Chemical Engineering Education, 2011
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
Descriptors: Chemical Engineering, Science Instruction, College Science, Computer Software
Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K. – Chemical Engineering Education, 2011
This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…
Descriptors: Computer Software, Computer Uses in Education, Graduate Study, Educational Technology
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F. – Chemical Engineering Education, 2011
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
Descriptors: Chemical Engineering, Science Experiments, Chemistry, Scientific Concepts
Nasri, Zakia; Binous, Housam – Chemical Engineering Education, 2009
A single equation of state (EOS) such as the Peng-Robinson (PR) EOS can accurately describe both the liquid and vapor phase. We present several applications of this equation of state, including estimation of pure component properties and computation of the vapor-liquid equilibrium (VLE) diagram for binary mixtures. We perform high-pressure…
Descriptors: Thermodynamics, Chemical Engineering, Chemistry, Equations (Mathematics)
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima – Chemical Engineering Education, 2009
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Descriptors: Computer Software, Computer Literacy, Problem Solving, Chemical Engineering
Metzger, Matthew J.; Glasser, Benjamin J.; Glasser, David; Hausberger, Brendon; Hildebrandt, Diane – Chemical Engineering Education, 2007
Ask a graduating chemical engineering student the following question: What makes one reactor different from the next? The answers received will often be unsatisfactory and will vary widely in scope. Some may cite the difference between the basic design equations, others may point out a PFR is "longer," and still others may state that it…
Descriptors: Graduate Students, Chemical Engineering, Equations (Mathematics), Teaching Methods
Binous, Housam – Chemical Engineering Education, 2006
We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…
Descriptors: Chemical Engineering, Mathematics, Computation, Problem Solving
Parulekar, Satish J. – Chemical Engineering Education, 2006
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
Descriptors: Chemical Engineering, Computer Software, Undergraduate Study, College Science
Santoro, Marina; Mazzotti, Marco – Chemical Engineering Education, 2006
Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…
Descriptors: Chemical Engineering, Computer Assisted Instruction, Educational Technology, College Students