NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dadi Ramesh; Suresh Kumar Sanampudi – European Journal of Education, 2024
Automatic essay scoring (AES) is an essential educational application in natural language processing. This automated process will alleviate the burden by increasing the reliability and consistency of the assessment. With the advances in text embedding libraries and neural network models, AES systems achieved good results in terms of accuracy.…
Descriptors: Scoring, Essays, Writing Evaluation, Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tahereh Firoozi; Okan Bulut; Mark J. Gierl – International Journal of Assessment Tools in Education, 2023
The proliferation of large language models represents a paradigm shift in the landscape of automated essay scoring (AES) systems, fundamentally elevating their accuracy and efficacy. This study presents an extensive examination of large language models, with a particular emphasis on the transformative influence of transformer-based models, such as…
Descriptors: Turkish, Writing Evaluation, Essays, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Yishen Song; Qianta Zhu; Huaibo Wang; Qinhua Zheng – IEEE Transactions on Learning Technologies, 2024
Manually scoring and revising student essays has long been a time-consuming task for educators. With the rise of natural language processing techniques, automated essay scoring (AES) and automated essay revising (AER) have emerged to alleviate this burden. However, current AES and AER models require large amounts of training data and lack…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Botarleanu, Robert-Mihai; Dascalu, Mihai; Allen, Laura K.; Crossley, Scott Andrew; McNamara, Danielle S. – Grantee Submission, 2021
Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale.…
Descriptors: Computer Assisted Testing, Scoring, Natural Language Processing, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baral, Sami; Botelho, Anthony; Santhanam, Abhishek; Gurung, Ashish; Cheng, Li; Heffernan, Neil – International Educational Data Mining Society, 2023
Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended…
Descriptors: Mathematics Instruction, Mathematical Concepts, Problem Solving, Test Format
Yi Gui – ProQuest LLC, 2024
This study explores using transfer learning in machine learning for natural language processing (NLP) to create generic automated essay scoring (AES) models, providing instant online scoring for statewide writing assessments in K-12 education. The goal is to develop an instant online scorer that is generalizable to any prompt, addressing the…
Descriptors: Writing Tests, Natural Language Processing, Writing Evaluation, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhongdi Wu; Eric Larson; Makoto Sano; Doris Baker; Nathan Gage; Akihito Kamata – Grantee Submission, 2023
In this investigation we propose new machine learning methods for automated scoring models that predict the vocabulary acquisition in science and social studies of second grade English language learners, based upon free-form spoken responses. We evaluate performance on an existing dataset and use transfer learning from a large pre-trained language…
Descriptors: Prediction, Vocabulary Development, English (Second Language), Second Language Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, H.; Magooda, A.; Litman, D.; Correnti, R.; Wang, E.; Matsumura, L. C.; Howe, E.; Quintana, R. – Grantee Submission, 2019
Writing a good essay typically involves students revising an initial paper draft after receiving feedback. We present eRevise, a web-based writing and revising environment that uses natural language processing features generated for rubric-based essay scoring to trigger formative feedback messages regarding students' use of evidence in…
Descriptors: Formative Evaluation, Essays, Writing (Composition), Revision (Written Composition)
Crossley, Scott A.; Kyle, Kristopher; McNamara, Danielle S. – Grantee Submission, 2015
This study investigates the relative efficacy of using linguistic micro-features, the aggregation of such features, and a combination of micro-features and aggregated features in developing automatic essay scoring (AES) models. Although the use of aggregated features is widespread in AES systems (e.g., e-rater; Intellimetric), very little…
Descriptors: Essays, Scoring, Feedback (Response), Writing Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Enright, Mary K.; Quinlan, Thomas – Language Testing, 2010
E-rater[R] is an automated essay scoring system that uses natural language processing techniques to extract features from essays and to model statistically human holistic ratings. Educational Testing Service has investigated the use of e-rater, in conjunction with human ratings, to score one of the two writing tasks on the TOEFL-iBT[R] writing…
Descriptors: Second Language Learning, Scoring, Essays, Language Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis