NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Manuel T. Rein; Jeroen K. Vermunt; Kim De Roover; Leonie V. D. E. Vogelsmeier – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of positive and negative affect over time. An intuitive approach is to first estimate the measurement model of the latent variables, then compute factor scores, and finally use these factor scores as observed scores in vector autoregressive…
Descriptors: Measurement Techniques, Factor Analysis, Scores, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Wen; Roscoe, Rod D.; Craig, Scotty D.; Johnson-Glenberg, Mina C. – Journal of Educational Computing Research, 2022
Virtual reality (VR) has a high potential to facilitate education. However, the design of many VR learning applications was criticized for lacking the guidance of explicit and appropriate learning theories. To advance the use of VR in effective instruction, this study proposed a model that extended the cognitive-affective theory of learning with…
Descriptors: Affective Behavior, Learning Theories, Computer Simulation, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Starrett, Michael J.; Stokes, Jared D.; Huffman, Derek J.; Ferrer, Emilio; Ekstrom, Arne D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
An important question regards how we use environmental boundaries to anchor spatial representations during navigation. Behavioral and neurophysiological models appear to provide conflicting predictions, and this question has been difficult to answer because of technical challenges with testing navigation in novel, large-scale, realistic spatial…
Descriptors: Spatial Ability, Computer Simulation, Prediction, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Nik Nazli, Nik Nadian Nisa; Sheikh Khairudin, Sheikh Muhamad Hizam – Journal of Workplace Learning, 2018
Purpose: This paper aims to identify the relationship between organizational learning culture, psychological contract breach, work engagement, training simulation and transfer of training, to examine the effect of transfer of training on organizational citizenship behaviour and to determine the mediating effect of transfer of training on the…
Descriptors: Transfer of Training, Workplace Learning, Foreign Countries, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Riley, Jason M.; Ellegood, William A.; Solomon, Stanislaus; Baker, Jerrine – Journal of International Education in Business, 2017
Purpose: This study aims to understand how mode of delivery, online versus face-to-face, affects comprehension when teaching operations management concepts via a simulation. Conceptually, the aim is to identify factors that influence the students' ability to learn and retain new concepts. Design/methodology/approach: Leveraging Littlefield…
Descriptors: Teaching Methods, Delivery Systems, Comprehension, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Descriptors: Bayesian Statistics, Structural Equation Models, Computer Software, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Wu, Eric; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
The REQS package is an interface between the R environment of statistical computing and the EQS software for structural equation modeling. The package consists of 3 main functions that read EQS script files and import the results into R, call EQS script files from R, and run EQS script files from R and import the results after EQS computations.…
Descriptors: Structural Equation Models, Computer Software, Statistical Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Gagne, Phill; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Simulation researchers are sometimes faced with the need to use multiple statistical software packages in the process of conducting their research, potentially having to go between software packages manually. This can be a tedious and time-consuming process that generally motivates researchers to use fewer replications in their simulations than…
Descriptors: Structural Equation Models, Computer Software, Researchers, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Zuo, Youzhen – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation, Researchers
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Jaehwa; Harring, Jeffrey R.; Hancock, Gregory R. – Multivariate Behavioral Research, 2009
Throughout much of the social and behavioral sciences, latent growth modeling (latent curve analysis) has become an important tool for understanding individuals' longitudinal change. Although nonlinear variations of latent growth models appear in the methodological and applied literature, a notable exclusion is the treatment of growth following…
Descriptors: Causal Models, Structural Equation Models, Longitudinal Studies, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Bai, Yun; Poon, Wai-Yin – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Two-level data sets are frequently encountered in social and behavioral science research. They arise when observations are drawn from a known hierarchical structure, such as when individuals are randomly drawn from groups that are randomly drawn from a target population. Although 2-level data analysis in the context of structural equation modeling…
Descriptors: Structural Equation Models, Data Analysis, Simulation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article discusses replication sampling variance estimation techniques that are often applied in analyses using data from complex sampling designs: jackknife repeated replication, balanced repeated replication, and bootstrapping. These techniques are used with traditional analyses such as regression, but are currently not used with structural…
Descriptors: Structural Equation Models, Simulation, Sampling, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Dinno, Alexis – Multivariate Behavioral Research, 2009
Horn's parallel analysis (PA) is the method of consensus in the literature on empirical methods for deciding how many components/factors to retain. Different authors have proposed various implementations of PA. Horn's seminal 1965 article, a 1996 article by Thompson and Daniel, and a 2004 article by Hayton, Allen, and Scarpello all make assertions…
Descriptors: Structural Equation Models, Item Response Theory, Computer Software, Surveys
Previous Page | Next Page ยป
Pages: 1  |  2