Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 2 |
Descriptor
Cognitive Development | 30 |
Concept Formation | 30 |
Fractions | 30 |
Mathematics Education | 23 |
Mathematics Instruction | 20 |
Teaching Methods | 13 |
Elementary Education | 12 |
Problem Solving | 12 |
Elementary School Mathematics | 10 |
Mathematical Concepts | 10 |
Elementary Secondary Education | 8 |
More ▼ |
Source
Author
Braithwaite, David W. | 2 |
Graeber, Anna O. | 2 |
Hunting, Robert P. | 2 |
Siegler, Robert S. | 2 |
Tian, Jing | 2 |
Watson, Jane M. | 2 |
Armstrong, Barbara E. | 1 |
Babbitt, Beatrice | 1 |
Baker, Kay M. | 1 |
Barrett, Everard | 1 |
Bezuk, Nadine | 1 |
More ▼ |
Publication Type
Journal Articles | 20 |
Reports - Research | 14 |
Guides - Classroom - Teacher | 11 |
Books | 2 |
Opinion Papers | 2 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Grade 4 | 2 |
Audience
Practitioners | 13 |
Teachers | 13 |
Researchers | 4 |
Location
Pennsylvania (Pittsburgh) | 2 |
USSR | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Braithwaite, David W.; Tian, Jing; Siegler, Robert S. – Developmental Science, 2018
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, 2017) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments examining…
Descriptors: Fractions, Addition, Arithmetic, Hypothesis Testing
Braithwaite, David W.; Tian, Jing; Siegler, Robert S. – Grantee Submission, 2018
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…
Descriptors: Fractions, Addition, Arithmetic, Mathematics
Barrett, Everard – 1991
Examining how students reconstruct stories they've heard can give insights into why students often have difficulty understanding and retaining mathematics. Behavioral psychologists refer to the phenomenon of piecing together a series of events as "chaining." This paper argues that the cognitive capacity to reconstruct a whole contextual…
Descriptors: Cognitive Development, Cognitive Mapping, Concept Formation, Context Effect

Schultz, James E. – Arithmetic Teacher, 1991
Discusses area models that can be used in grades three through nine, showing how the model generalizes from discrete situations involving the arithmetic of whole numbers to continuous situations involving decimals, fractions, percents, probability, algebra, and more advanced mathematics. (14 references) (MDH)
Descriptors: Algebra, Area, Cognitive Development, Cognitive Processes

Vance, James H. – School Science and Mathematics, 1992
A study interviewed 6 grade-6 students after participation in 21 lessons on basic concepts of fractions and decimals to determine how different children construct rational number concepts. Discussed the formation of the key concept of equivalent fractions based on student responses to interview questions. (MDH)
Descriptors: Cognitive Development, Cognitive Measurement, Concept Formation, Decimal Fractions

Graeber, Anna O. – Arithmetic Teacher, 1993
Discusses the two overgeneralizations "multiplications makes bigger" and "division makes smaller" in the context of solving word problems involving rational numbers less than one. Presents activities to help students make sense of multiplication and division in these situations. (MDH)
Descriptors: Cognitive Development, Concept Formation, Decimal Fractions, Division

Watson, Jane M. – Australian Journal of Early Childhood, 1997
Twenty-four children in kindergarten through fourth grade were interviewed and asked to share a pancake fairly among three dolls. The context was chosen to allow children to use out-of-school intuition and understanding if preferred. Four levels of development were identified leading to the understanding of fair fractions as those where each part…
Descriptors: Cognitive Development, Concept Formation, Concept Teaching, Fractions

Hiebert, James; Tonnessen, Lowell H. – Journal for Research in Mathematics Education, 1978
Nine children were tested to determine the appropriateness of Piaget's part-whole fraction concept interpretation for both the discrete case and the continuous cases of length and area. (MP)
Descriptors: Cognitive Development, Concept Formation, Educational Research, Elementary Education

Stipek, Deborah; Salmon, Julie M.; Givvin, Karen B.; Kazemi, Elham; Saxe, Geoffrey; MacGyvers, Valanne L. – Journal for Research in Mathematics Education, 1998
Discusses convergence between instructional practices suggested by research on achievement motivation and practices promoted in mathematics-instruction reform literature by focusing on fourth- through sixth-grade students (N=624) and their teachers (N=24). Concludes that the instructional practices suggested in the literature of both research…
Descriptors: Cognitive Development, Concept Formation, Educational Change, Fractions
Hunting, Robert P. – 1999
This report describes an investigation of how young children respond to two types of tasks: (1) finding one-half of a continuous and a discrete material; and (2) attempting to share continuous and discrete material equally between two dolls. Continuous material, such as string, paper, or liquid, is quantified by adults using measurement units. A…
Descriptors: Cognitive Development, Computation, Concept Formation, Division

Mix, Kelly S.; Levine, Susan Cohen; Huttenlocher, Janellen – Developmental Psychology, 1999
Tested 3- to 7-year-olds' ability to calculate with whole numbers, fractions, and mixed-numbers, in a task in which an amount was displayed, then hidden. Subjects were to determine the hidden amount resulting when numbers were added or substracted. Found that, although fraction problems were more difficult than whole-number problems, competence on…
Descriptors: Cognitive Development, Computation, Concept Formation, Early Childhood Education

Tzur, Ron – Journal for Research in Mathematics Education, 1999
Studies the co-emergence of teaching and children's construction of specific conceptions that support the generation of improper fractions in a constructivist teaching experiment with two fourth-grade students posing and solving tasks in a computer microworld. Reports that examination of the teacher's adaptation of learning situations (tasks) and…
Descriptors: Cognitive Development, Computer Uses in Education, Concept Formation, Constructivism (Learning)

Cramer, Kathleen; Bezuk, Nadine – Arithmetic Teacher, 1991
Applies the Lesh Translation Model to develop conceptual understanding by showing relationships between five modes of representation proposed by Lesh to learn multiplication of fractions. Presents five teaching activities based on the translation model. (MDH)
Descriptors: Cognitive Development, Concept Formation, Elementary Education, Fractions
Pirie, Susan; Kieren, Thomas – 1991
Given the current and widespread practical interest in mathematical understanding, particularly with respect to higher order thinking skills, curriculum reform advocates in many countries cite the need for teaching mathematics with understanding. However, the characterization of understanding in ways that highlight its growth, as well as the…
Descriptors: Cognitive Development, Cognitive Mapping, Concept Formation, Elementary Secondary Education

Wearne, Diana – Educational Studies in Mathematics, 1990
Reported are the effects of a conceptually oriented unit on decimal fractions. The relationships between short-term changes in solving processes and the stability of these processes over time, performance of students, and entry achievement level and the long-term effects of conceptually based instruction are discussed. (KR)
Descriptors: Cognitive Development, Concept Formation, Elementary Education, Elementary School Mathematics
Previous Page | Next Page ยป
Pages: 1 | 2