NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shuhui Li; Xinyue Jiao; Su Cai; Yihua Shen – British Journal of Educational Technology, 2025
This design-based research project explored how various design features of AR-based learning environments (ARLE) influence students' mathematics self-efficacy and learning of kinematics. Specifically, five ARLEs with different design features were developed and implemented with 136 seventh-grade students in two rounds. Data were gathered from pre-…
Descriptors: Computer Simulation, Mathematics Instruction, Self Efficacy, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Cumber, Peter – International Journal of Mathematical Education in Science and Technology, 2021
Mechanical engineering students often find the formulation and analysis of dynamical systems difficult. The response of some mechanical engineering undergraduates is that as much as possible courses on mechanics are best avoided. The aim of this paper is to produce some interesting dynamical systems that may help to change the opinions of the…
Descriptors: Engineering, Mechanics (Physics), Scientific Concepts, Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Luchembe, Dennis; Shumba, Overson – African Journal of Research in Mathematics, Science and Technology Education, 2022
Research has found circular and rotational motion to be a challenging topic for undergraduate physics students. This article reports on Introductory Physics students' learning of concepts and quantitative principles in circular and rotational motion. It involves a teaching strategy that uses hands-on practical work, PhET simulations and a focus on…
Descriptors: Motion, Scientific Concepts, Concept Formation, College Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aslan, Ferhat; Buyuk, Ugur – European Journal of Educational Sciences, 2021
The purpose of this work is to examine the issue of pre-service science teachers' (PSST) Geogebra applications on misconceptions about projectile motion (PM) and the permanence of learning concepts. In this study, quantitative research method was used as scientific research method, and semi-experimental design with pre-test, post-test control…
Descriptors: Misconceptions, Concept Formation, Physics, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Zohar, Asnat R.; Levy, Sharona T. – Journal of Research in Science Teaching, 2021
Embodied cognition theories view sensorimotor activity as fundamental to learning, knowing, and reasoning. To investigate the role of physical movement in conceptual learning, we developed and explored an Embodied Learning Interactive Chemistry environment (ELI-Chem). The ELI-Chem learning environment includes a computer simulation, a device for…
Descriptors: Chemistry, Physics, Motion, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Chinaka, Taurayi Willard – African Journal of Research in Mathematics, Science and Technology Education, 2021
Research in the past decades has repeatedly revealed that first year university students struggle to understand two-dimensional projectile motion concepts. In contrast to high school, projectile motion frequently makes use of components and it requires at least a basic understanding of trigonometry concepts. To follow the lessons and generate…
Descriptors: College Freshmen, Scientific Concepts, Motion, Concept Formation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Antwi, Victor; Addo-Wuver, Fortune; Sakyi-Hagan, Nelly – Science Education International, 2020
Newton's third law of motion is probably one of the easiest and simplest laws in physics for students to recite. However, when they are given questions where they must apply the understanding of the law to solve a problem, it often becomes a challenge. They seem to forget about the fact that action and reaction are opposite and equal. In this…
Descriptors: Motion, Physics, Concept Formation, Misconceptions
Yeh, Andy – Mathematics Education Research Group of Australasia, 2010
This paper reports on three primary school students' explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students…
Descriptors: Mathematics Education, Computer Simulation, Foreign Countries, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin – Educational Research and Evaluation, 2009
The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…
Descriptors: Experimental Groups, Control Groups, Scientific Concepts, Instructional Effectiveness
Peer reviewed Peer reviewed
Monaghan, James M.; Clement, John – International Journal of Science Education, 1999
Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…
Descriptors: Cognitive Processes, Computer Simulation, Concept Formation, Memory