NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers4
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Boublil, Shachar; Blair, David; Treagust, David F. – Teaching Science, 2023
The demand for improving student interest in science has increased efforts toward teaching Einstein's theory of general relativity in schools. Research has already shown that teaching Einsteinian gravity at the secondary level is feasible, however, appropriate resources must be readily available for science teachers to make Einsteinian gravity…
Descriptors: Science Experiments, Scientific Concepts, Physics, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Thy, Savrin; Iwayama, Tsutomu – Physics Education, 2022
Viscous and Coulomb's friction combined contribute to the damping of a pendulum; however, they are usually treated as a silo effect. In this study, we investigate the combination of viscous and Coulomb damping in compound pendulum oscillation, employing two modern instruments that are cheap and handy to quantify the experiments, which are video…
Descriptors: Science Instruction, Mechanics (Physics), Motion, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Luchembe, Dennis; Shumba, Overson – African Journal of Research in Mathematics, Science and Technology Education, 2022
Research has found circular and rotational motion to be a challenging topic for undergraduate physics students. This article reports on Introductory Physics students' learning of concepts and quantitative principles in circular and rotational motion. It involves a teaching strategy that uses hands-on practical work, PhET simulations and a focus on…
Descriptors: Motion, Scientific Concepts, Concept Formation, College Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sukmak, Warawut; Musik, Panjit – Turkish Online Journal of Educational Technology - TOJET, 2022
The real-time graphing of simple harmonic motion of mass on springs with an Arduino based on an experiment set for teaching and learning physics in high schools where students can learn from real experiences. The objectives of this study are to create and develop a real-time measurement for vertical oscillations of mass on springs using the…
Descriptors: Physics, Science Instruction, Motion, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Chettaoui, Neila; Atia, Ayman; Bouhlel, Med Salim – Journal of Educational Computing Research, 2022
Embodied learning pedagogy highlights the interconnections between the brain, body, and the concrete environment. As a teaching method, it provides means of engaging the physical body in multimodal learning experiences to develop the students' cognitive process. Based on this perspective, several research studies introduced different interaction…
Descriptors: Learning Modalities, Educational Technology, Technology Uses in Education, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Wörner, Salome; Fischer, Christian; Kuhn, Jochen; Scheiter, Katharina; Neumann, Irene – Physics Teacher, 2021
Video motion analysis allows tracing trajectories of objects in motion and is an established method in physics education. Tablet computers, with their integrated cameras, offer the opportunity to both record and analyze dynamic motions during experiments on a single device. This enables students to work without transitioning the data between…
Descriptors: Video Technology, Motion, Astronomy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bates, Alan – Physics Teacher, 2021
The law of conservation of momentum can be applied to a wide range of processes whether it is the collision of subatomic particles, rocket propulsion, or the recoil of a cannon. In this experiment two technologies, the Arduino microcontroller and a PASCO smart cart, are used to create a movable rubber band launcher. The Arduino microcontroller is…
Descriptors: Science Instruction, Motion, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kapucu, Serkan – Physics Education, 2021
This study aims to measure the angular velocity of a clock's second hand and the average angular velocity of a metronome using a smartphone. To determine the angular velocities, the ticking of clock's second hand and the metronome beats were recorded. The angle between the extreme left and right positions of the metronome's hand was also measured.…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
DeVore, Seth; Singh, Chandralekha – Physical Review Physics Education Research, 2020
We describe the development and in-class evaluation of a quantum interactive learning tutorial (QuILT) on quantum key distribution, a context which involves an exciting application of quantum mechanics. The protocol used in the QuILT described here uses single photons with nonorthogonal polarization states to generate a random shared key over a…
Descriptors: Science Instruction, Quantum Mechanics, Scientific Concepts, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Laotreephet, Pimpakarn; Khemmani, Supitch; Puttharugsa, Chokchai – Physics Education, 2020
This paper demonstrated a simple experiment for determining the coefficient of rolling friction of a hollow cylinder rolling on a curved track using a smartphone's sensors. We studied theoretically and experimentally the rolling motion of a hollow cylinder uncovered and covered with various materials (synthetic leather and sponge sheets). The…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Chia-Yu; Wu, Chao-Jung; Chiou, Guo-Li; Wong, Wing-Kwong – Journal of Baltic Science Education, 2022
Proposing scientific descriptions is critical for individuals to cope with daily problems and acquire essential information. Nonetheless, few classes have enhanced students' ability to describe facts of scientific phenomena. Thus, using a tool of technology-based laboratory, this research examined whether students' scientific descriptions and…
Descriptors: Undergraduate Students, Mathematical Models, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Balaton, Mariana; Cavadas, Jorge; Carvalho, Paulo Simeão; Lima, J. J. G. – Physics Education, 2021
Experimental teaching is essential for a good understanding of science, especially on Physics. Practical activities play an important role for engaging students with science, mainly when they interact directly with equipment, collect experimental data with computers and/or use interactive software for data analysis. In this work, we present the…
Descriptors: Science Instruction, Physics, Robotics, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Dumar, John – Physics Teacher, 2021
When our school implemented AP Physics 1, I wanted to include a project that would extend over time, use more advanced data analysis, and teach students about handling experimental error. Using a donated 5-inch Newtonian telescope and an entry-level digital camera, the students gathered data from digital images of the four Galilean moons, Io,…
Descriptors: Science Instruction, Physics, Advanced Placement Programs, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Hinrichsen, Peter F. – Physics Education, 2020
MEMs gyros, such as those in smartphones allow the angular velocity of pendulums to be precisely measured at large angles, and phase plots of the angular acceleration versus the angular displacement confirm that [double dot][phi] = -[omega][superscript 2][subscript o] sin[phi] even for the non-sinusoidal motion at amplitude [phi][subscript o]…
Descriptors: Physics, Science Instruction, Motion, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3