NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers3
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kapucu, Serkan – Physics Teacher, 2019
In recent years, smartphone sensors have been frequently used in educational demonstrations to improve students' understanding of certain physical kinematic topics. In particular, the sensors on modern smartphones enable students to use their phones as physics mini-laboratories, and they have been used to analyze objects' speeds and accelerations…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Chettaoui, Neila; Atia, Ayman; Bouhlel, Med Salim – Journal of Educational Computing Research, 2022
Embodied learning pedagogy highlights the interconnections between the brain, body, and the concrete environment. As a teaching method, it provides means of engaging the physical body in multimodal learning experiences to develop the students' cognitive process. Based on this perspective, several research studies introduced different interaction…
Descriptors: Learning Modalities, Educational Technology, Technology Uses in Education, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Wörner, Salome; Fischer, Christian; Kuhn, Jochen; Scheiter, Katharina; Neumann, Irene – Physics Teacher, 2021
Video motion analysis allows tracing trajectories of objects in motion and is an established method in physics education. Tablet computers, with their integrated cameras, offer the opportunity to both record and analyze dynamic motions during experiments on a single device. This enables students to work without transitioning the data between…
Descriptors: Video Technology, Motion, Astronomy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
de Oliveira, A. L.; de Jesus, V. L. B.; Sasaki, D. G. G. – Physics Education, 2021
The drag effect on a falling ball caused by air is a conventional subject in the most well-known textbooks of classical mechanics and fluid dynamics. Further, there are some papers that employ video analysis to track objects movements in the air making it possible to obtain position data as a function of time and its graphs. However, none of them…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kapucu, Serkan – Physics Education, 2021
This study aims to measure the angular velocity of a clock's second hand and the average angular velocity of a metronome using a smartphone. To determine the angular velocities, the ticking of clock's second hand and the metronome beats were recorded. The angle between the extreme left and right positions of the metronome's hand was also measured.…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Laotreephet, Pimpakarn; Khemmani, Supitch; Puttharugsa, Chokchai – Physics Education, 2020
This paper demonstrated a simple experiment for determining the coefficient of rolling friction of a hollow cylinder rolling on a curved track using a smartphone's sensors. We studied theoretically and experimentally the rolling motion of a hollow cylinder uncovered and covered with various materials (synthetic leather and sponge sheets). The…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Gallitto, Aurelio Agliolo; Battaglia, Onofrio Rosario; Fazio, Claudio – Physics Education, 2021
We describe an educational activity that can be done by using smartphones to collect data in physics experiments aimed to measure the oscillating period of a spring-mass system and the elastic constant of the helicoidal spring by the dynamic method. Results for the oscillating period and for the elastic constant of the spring agree very well with…
Descriptors: Science Instruction, Physics, Measurement Techniques, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Balaton, Mariana; Cavadas, Jorge; Carvalho, Paulo Simeão; Lima, J. J. G. – Physics Education, 2021
Experimental teaching is essential for a good understanding of science, especially on Physics. Practical activities play an important role for engaging students with science, mainly when they interact directly with equipment, collect experimental data with computers and/or use interactive software for data analysis. In this work, we present the…
Descriptors: Science Instruction, Physics, Robotics, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Nuryadin, Bebeh Wahid – Physics Education, 2020
This research aims to develop a falling chain experiment apparatus using kitchen scales and digital cameras (smartphones). Digital cameras were used to observe and record changes in the mass of falling chains measured using kitchen scales. Video recordings from observations of falling chain masses were analysed using Tracker 5.1.1 software. The…
Descriptors: Physics, Science Instruction, Teaching Methods, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Hinrichsen, Peter F. – Physics Education, 2020
MEMs gyros, such as those in smartphones allow the angular velocity of pendulums to be precisely measured at large angles, and phase plots of the angular acceleration versus the angular displacement confirm that [double dot][phi] = -[omega][superscript 2][subscript o] sin[phi] even for the non-sinusoidal motion at amplitude [phi][subscript o]…
Descriptors: Physics, Science Instruction, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, Andreas; Stallmach, Frank – Physics Education, 2022
Smartphone-based experimental exercises were incorporated as part of the homework problems in an introductory mechanics course at a university. A quasi-experimental field study with two cohorts design was performed to measure the impact of such exercises on motivation, interest and conceptual understanding. The empirical results on learning…
Descriptors: Telecommunications, Handheld Devices, Homework, Mechanics (Physics)
Samosa, Resty C. – Online Submission, 2021
Physics phenomena are widely viewed in daily life, and the technical nature of physics makes modern life seem to be simpler than it was many years ago. Physics teaching and learning, on the other hand, has not always been done effectively, especially in developing countries. This study aimed measured the effectiveness using mobile physics on…
Descriptors: Physics, Science Instruction, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Odom, Arthur L.; Bell, Clare V. – Science Teacher, 2019
In 1827, Robert Brown noticed pollen suspended in water bouncing around erratically. It wasn't until 1905 that Albert Einstein provided an acceptable explanation of the phenomenon (Kac 1947): Brownian motion is the random movement of particles (e.g., pollen) in a fluid (liquid or gas) as a result of collisions with atoms and molecules. Movement of…
Descriptors: Science Instruction, Molecular Structure, Motion, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bani, Marsi; Masruddin, Masruddin – Journal of Technology and Science Education, 2021
Research has been conducted to develop a physics learning media in the form of an Android-based pocket book. We designed a Harmonic Oscillation Pocket Book and tested its feasibility and effectiveness in improving the cognitive learning outcomes of students. This study used the research and development method adapted from the ADDIE model. The…
Descriptors: High School Students, Secondary School Science, Educational Technology, Technology Uses in Education
Previous Page | Next Page »
Pages: 1  |  2