NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kyla Adams; Anastasia Lonshakova; David Blair; David Treagust; Tejinder Kaur – Teaching Science, 2024
Quantum science is in the news daily and engages students' interest and curiosity. A fundamental quantum science concept that underpins medical imaging, quantum computing and many future technologies is quantum spin. Quantum spin can explain many physical phenomena that are in the lower secondary school curriculum, such as magnetism and light,…
Descriptors: Quantum Mechanics, Science Instruction, Physics, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Haertel, Hermann – Physics Teacher, 2022
The question of how the processes around the Faraday generator with its rotating magnet should be interpreted has been controversial since its discovery by Faraday. Does the magnetic field rotate together with the rotating magnet or does it remain stationary? Furthermore, does one only need Faraday's flux law to interpret inductive processes, or…
Descriptors: Science Instruction, Physics, Laboratory Equipment, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Boublil, Shachar; Blair, David; Treagust, David F. – Teaching Science, 2023
The demand for improving student interest in science has increased efforts toward teaching Einstein's theory of general relativity in schools. Research has already shown that teaching Einsteinian gravity at the secondary level is feasible, however, appropriate resources must be readily available for science teachers to make Einsteinian gravity…
Descriptors: Science Experiments, Scientific Concepts, Physics, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ha, Hye Jin; Jang, Taehun; Sohn, Sang Ho – Physics Education, 2022
In this study, we derived several formulas for the currents induced in a circular loop by a magnet connected to a spring-based simple harmonic oscillation system. In addition, we conducted an experiment for measuring the induced currents and compared the results with the theoretical prediction. It was confirmed that the prediction from the derived…
Descriptors: Science Instruction, Magnets, Motion, Laboratory Equipment
Ryan Tapping – ProQuest LLC, 2021
In this dissertation I will present my work in both the fields of spintronics and physics education research. In the first section, I present a method to account for spin pumping in spin torque ferromagnetic resonance (ST-FMR) measurements. A spin current can be generated via the spin Hall effect (SHE), which is typically transverse to the charge…
Descriptors: Magnets, Electronics, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Schnittka, Christine – Science Teacher, 2017
Many students (and adults) do not understand a basic tenet of energy literacy: how electricity is produced. They do not know how coal or other fossil fuels are used to make electricity, nor do they understand how nuclear power, hydroelectric power, and wind power work. The author developed a series of lessons to help students understand how…
Descriptors: Science Instruction, Energy, Scientific Concepts, Fuels
Peer reviewed Peer reviewed
Direct linkDirect link
Kodejška, C.; Lepil, O.; Sedlácková, H. – Physics Education, 2018
This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of…
Descriptors: Secondary School Science, High School Students, Mechanics (Physics), Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Ladino, L. A.; Rondón, S. H.; Orduz, P. – Physics Education, 2015
This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…
Descriptors: Science Instruction, Motion, Physics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Glenn S. – European Journal of Physics, 2011
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Descriptors: Scientific Concepts, Physics, Science Instruction, Energy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tambade, Popat S. – European Journal of Physics Education, 2011
The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…
Descriptors: Motion, Scientific Concepts, Science Instruction, Computer Uses in Education