Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 20 |
Descriptor
Correlation | 23 |
Structural Equation Models | 23 |
Goodness of Fit | 8 |
Error of Measurement | 7 |
Scores | 6 |
Factor Analysis | 5 |
Monte Carlo Methods | 5 |
Sample Size | 5 |
Simulation | 5 |
Statistical Analysis | 5 |
Bayesian Statistics | 4 |
More ▼ |
Source
Educational and Psychological… | 23 |
Author
Cao, Chunhua | 2 |
Chen, Yi-Hsin | 2 |
Ferron, John | 2 |
Hancock, Gregory R. | 2 |
Kim, Eun Sook | 2 |
Acosta, Sandra | 1 |
Algina, James | 1 |
Arav, Marina | 1 |
Aydin, Burak | 1 |
Beauducel, André | 1 |
Bruno D. Zumbo | 1 |
More ▼ |
Publication Type
Journal Articles | 23 |
Reports - Research | 17 |
Reports - Evaluative | 5 |
Reports - Descriptive | 1 |
Education Level
Junior High Schools | 3 |
Middle Schools | 3 |
Secondary Education | 3 |
Elementary Education | 2 |
Adult Education | 1 |
Early Childhood Education | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
More ▼ |
Audience
Location
Canada | 1 |
New York | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Liang, Xinya – Educational and Psychological Measurement, 2020
Bayesian structural equation modeling (BSEM) is a flexible tool for the exploration and estimation of sparse factor loading structures; that is, most cross-loading entries are zero and only a few important cross-loadings are nonzero. The current investigation was focused on the BSEM with small-variance normal distribution priors (BSEM-N) for both…
Descriptors: Factor Structure, Bayesian Statistics, Structural Equation Models, Goodness of Fit
Hayes, Timothy; Usami, Satoshi – Educational and Psychological Measurement, 2020
Recently, quantitative researchers have shown increased interest in two-step factor score regression (FSR) approaches to structural model estimation. A particularly promising approach proposed by Croon involves first extracting factor scores for each latent factor in a larger model, then correcting the variance-covariance matrix of the factor…
Descriptors: Regression (Statistics), Structural Equation Models, Statistical Bias, Correlation
Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor – Educational and Psychological Measurement, 2017
Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…
Descriptors: Correlation, Goodness of Fit, Hierarchical Linear Modeling, Structural Equation Models
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Hayduk, Leslie – Educational and Psychological Measurement, 2014
Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…
Descriptors: Factor Analysis, Goodness of Fit, Factor Structure, Structural Equation Models
Lai, Emily R.; Wolfe, Edward W.; Vickers, Daisy – Educational and Psychological Measurement, 2015
This report summarizes an empirical study that addresses two related topics within the context of writing assessment--illusory halo and how much unique information is provided by multiple analytic scores. Specifically, we address the issue of whether unique information is provided by analytic scores assigned to student writing, beyond what is…
Descriptors: Writing Tests, Scores, Bias, Holistic Approach
von Eye, Alexander; Wiedermann, Wolfgang – Educational and Psychological Measurement, 2014
Approaches to determining direction of dependence in nonexperimental data are based on the relation between higher-than second-order moments on one side and correlation and regression models on the other. These approaches have experienced rapid development and are being applied in contexts such as research on partner violence, attention deficit…
Descriptors: Statistical Analysis, Factor Analysis, Structural Equation Models, Correlation
Raykov, Tenko; Lee, Chun-Lung; Marcoulides, George A.; Chang, Chi – Educational and Psychological Measurement, 2013
The relationship between saturated path-analysis models and their fit to data is revisited. It is demonstrated that a saturated model need not fit perfectly or even well a given data set when fit to the raw data is examined, a criterion currently frequently overlooked by researchers utilizing path analysis modeling techniques. The potential of…
Descriptors: Structural Equation Models, Goodness of Fit, Path Analysis, Correlation
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Skinner, Ellen; Pitzer, Jennifer; Steele, Joel – Educational and Psychological Measurement, 2013
A study was designed to examine a multidimensional measure of children's coping in the academic domain as part of a larger model of motivational resilience. Using items tapping multiple ways of dealing with academic problems, including five adaptive ways (strategizing, help-seeking, comfort-seeking, self-encouragement, and commitment) and six…
Descriptors: Coping, Resilience (Psychology), Student Motivation, Student Adjustment
Previous Page | Next Page »
Pages: 1 | 2