NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Kano, Yutaka – Journal of Educational and Behavioral Statistics, 2018
Meta-analysis plays a key role in combining studies to obtain more reliable results. In social, behavioral, and health sciences, measurement units are typically not well defined. More meaningful results can be obtained by standardizing the variables and via the analysis of the correlation matrix. Structural equation modeling (SEM) with the…
Descriptors: Meta Analysis, Structural Equation Models, Maximum Likelihood Statistics, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael – Journal of Educational and Behavioral Statistics, 2015
The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…
Descriptors: Structural Equation Models, Hierarchical Linear Modeling, Factor Analysis, Multitrait Multimethod Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, James M. – Journal of Educational and Behavioral Statistics, 2008
Statistical procedures based on the general linear model (GLM) share much in common with one another, both conceptually and practically. The use of structural equation modeling path diagrams as tools for teaching the GLM as a body of connected statistical procedures is presented. A heuristic data set is used to demonstrate a variety of univariate…
Descriptors: Causal Models, Structural Equation Models, Multivariate Analysis, Multiple Regression Analysis