Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 20 |
Descriptor
Comparative Analysis | 20 |
Correlation | 20 |
Meta Analysis | 18 |
Medical Research | 10 |
Outcomes of Treatment | 10 |
Guidelines | 6 |
Bayesian Statistics | 5 |
Drug Therapy | 5 |
Models | 5 |
Randomized Controlled Trials | 5 |
Simulation | 5 |
More ▼ |
Source
Research Synthesis Methods | 20 |
Author
Riley, Richard D. | 3 |
Bennetts, Margherita | 2 |
Boucher, Martin | 2 |
Dias, Sofia | 2 |
Pedder, Hugo | 2 |
Schmid, Christopher H. | 2 |
Trikalinos, Thomas A. | 2 |
Welton, Nicky J. | 2 |
White, Ian R. | 2 |
Blake, Helen A. | 1 |
Bleich, André | 1 |
More ▼ |
Publication Type
Journal Articles | 20 |
Reports - Research | 16 |
Information Analyses | 2 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Van der Mierden, Stevie; Spineli, Loukia Maria; Talbot, Steven R.; Yiannakou, Christina; Zentrich, Eva; Weegh, Nora; Struve, Birgitta; Zur Brügge, Talke Friederike; Bleich, André; Leenaars, Cathalijn H. C. – Research Synthesis Methods, 2021
Systematic reviews with meta-analyses are powerful tools that can answer research questions based on data from published studies. Ideally, all relevant data is directly available in the text or tables, but often it is only presented in graphs. In those cases, the data can be extracted from graphs, but this potentially introduces errors. Here, we…
Descriptors: Graphs, Meta Analysis, Data, Correlation
Godolphin, Peter J.; White, Ian R.; Tierney, Jayne F.; Fisher, David J. – Research Synthesis Methods, 2023
Estimation of within-trial interactions in meta-analysis is crucial for reliable assessment of how treatment effects vary across participant subgroups. However, current methods have various limitations. Patients, clinicians and policy-makers need reliable estimates of treatment effects within specific covariate subgroups, on relative and absolute…
Descriptors: Meta Analysis, Outcomes of Treatment, Medical Research, Comparative Analysis
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Papadimitropoulou, Katerina; Stijnen, Theo; Riley, Richard D.; Dekkers, Olaf M.; Cessie, Saskia – Research Synthesis Methods, 2020
Meta-analysis of individual participant data (IPD) is considered the "gold-standard" for synthesizing clinical study evidence. However, gaining access to IPD can be a laborious task (if possible at all) and in practice only summary (aggregate) data are commonly available. In this work we focus on meta-analytic approaches of comparative…
Descriptors: Meta Analysis, Correlation, Scores, Outcomes of Treatment
Price, Malcolm J.; Blake, Helen A.; Kenyon, Sara; White, Ian R.; Jackson, Dan; Kirkham, Jamie J.; Neilson, James P.; Deeks, Jonathan J.; Riley, Richard D. – Research Synthesis Methods, 2019
Background: Multivariate meta-analysis (MVMA) jointly synthesizes effects for multiple correlated outcomes. The MVMA model is potentially more difficult and time-consuming to apply than univariate models, so if its use makes little difference to parameter estimates, it could be argued that it is redundant. Methods: We assessed the applicability…
Descriptors: Comparative Analysis, Medical Research, Correlation, Meta Analysis
Shih, Ming-Chieh; Tu, Yu-Kang – Research Synthesis Methods, 2019
Network meta-analysis (NMA) uses both direct and indirect evidence to compare the efficacy and harm between several treatments. Structural equation modeling (SEM) is a statistical method that investigates relations among observed and latent variables. Previous studies have shown that the contrast-based Lu-Ades model for NMA can be implemented in…
Descriptors: Meta Analysis, Structural Equation Models, Evidence, Comparative Analysis
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Pedder, Hugo; Dias, Sofia; Bennetts, Margherita; Boucher, Martin; Welton, Nicky J. – Research Synthesis Methods, 2019
Background: Model-based meta-analysis (MBMA) is increasingly used to inform drug-development decisions by synthesising results from multiple studies to estimate treatment, dose-response, and time-course characteristics. Network meta-analysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments,…
Descriptors: Meta Analysis, Guidelines, Drug Therapy, Decision Making
van Grootel, Leonie; van Wesel, Floryt; O'Mara-Eves, Alison; Thomas, James; Hox, Joop; Boeije, Hennie – Research Synthesis Methods, 2017
Background: This study describes an approach for the use of a specific type of qualitative evidence synthesis in the matrix approach, a mixed studies reviewing method. The matrix approach compares quantitative and qualitative data on the review level by juxtaposing concrete recommendations from the qualitative evidence synthesis against…
Descriptors: Correlation, Evidence, Qualitative Research, Statistical Analysis
Saluja, Ronak; Cheng, Sierra; delos Santos, Keemo Althea; Chan, Kelvin K. W. – Research Synthesis Methods, 2019
Objective: Various statistical methods have been developed to estimate hazard ratios (HRs) from published Kaplan-Meier (KM) curves for the purpose of performing meta-analyses. The objective of this study was to determine the reliability, accuracy, and precision of four commonly used methods by Guyot, Williamson, Parmar, and Hoyle and Henley.…
Descriptors: Meta Analysis, Reliability, Accuracy, Randomized Controlled Trials
Cheung, Mike W.-L.; Cheung, Shu Fai – Research Synthesis Methods, 2016
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Descriptors: Statistical Analysis, Models, Meta Analysis, Structural Equation Models
Wilson, Sandra Jo; Polanin, Joshua R.; Lipsey, Mark W. – Research Synthesis Methods, 2016
A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation…
Descriptors: Meta Analysis, Structural Equation Models, Correlation, Research Methodology
Debray, Thomas P. A.; Moons, Karel G. M.; Riley, Richard D. – Research Synthesis Methods, 2018
Small-study effects are a common threat in systematic reviews and may indicate publication bias. Their existence is often verified by visual inspection of the funnel plot. Formal tests to assess the presence of funnel plot asymmetry typically estimate the association between the reported effect size and their standard error, the total sample size,…
Descriptors: Meta Analysis, Comparative Analysis, Publications, Bias
Harrison, Sean; Jones, Hayley E.; Martin, Richard M.; Lewis, Sarah J.; Higgins, Julian P. T. – Research Synthesis Methods, 2017
Meta-analyses combine the results of multiple studies of a common question. Approaches based on effect size estimates from each study are generally regarded as the most informative. However, these methods can only be used if comparable effect sizes can be computed from each study, and this may not be the case due to variation in how the studies…
Descriptors: Meta Analysis, Sample Size, Effect Size, Comparative Analysis
Previous Page | Next Page »
Pages: 1 | 2