Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Structural Equation Modeling:… | 7 |
Author
Aiken, Leona S. | 1 |
Bai, Yun | 1 |
Bo Zhang | 1 |
Cham, Heining | 1 |
Cheung, Gordon Wai Hung | 1 |
Dayoung Lee | 1 |
Don C. Zhang | 1 |
Ge Jiang | 1 |
Guangjian Zhang | 1 |
Jing Luo | 1 |
Kelava, Augustin | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tong-Rong Yang; Li-Jen Weng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In Savalei's (2011) simulation that evaluated the performance of polychoric correlation estimates in small samples, two methods for treating zero-frequency cells, adding 0.5 (ADD) and doing nothing (NONE), were compared. Savalei tentatively suggested using ADD for binary data and NONE for data with three or more categories. Yet, Savalei's…
Descriptors: Correlation, Statistical Distributions, Monte Carlo Methods, Sample Size
Bo Zhang; Jing Luo; Susu Zhang; Tianjun Sun; Don C. Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Oblique bifactor models, where group factors are allowed to correlate with one another, are commonly used. However, the lack of research on the statistical properties of oblique bifactor models renders the statistical validity of empirical findings questionable. Therefore, the present study took the first step to examine the statistical properties…
Descriptors: Correlation, Predictor Variables, Monte Carlo Methods, Statistical Bias
Guangjian Zhang; Lauren A. Trichtinger; Dayoung Lee; Ge Jiang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Many applications of structural equation modeling involve ordinal (e.g., Likert) variables. A popular way of dealing with ordinal variables is to estimate the model with polychoric correlations rather than Pearson correlations. Such an estimation also requires the asymptotic covariance matrix of polychoric correlations. It is computationally…
Descriptors: Structural Equation Models, Predictor Variables, Correlation, Computation
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
Descriptors: Correlation, Models, Vertical Organization, Predictor Variables
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Descriptors: Simulation, Computation, Evaluation, Predictor Variables
Preacher, Kristopher J. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
It is often of interest to estimate partial or semipartial correlation coefficients as indexes of the linear association between 2 variables after partialing one or both for the influence of covariates. Squaring these coefficients expresses the proportion of variance in 1 variable explained by the other variable after controlling for covariates.…
Descriptors: Correlation, Hypothesis Testing, Structural Equation Models, Indexes
Bai, Yun; Poon, Wai-Yin; Cheung, Gordon Wai Hung – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Two-level data sets are frequently encountered in social and behavioral science research. They arise when observations are drawn from a known hierarchical structure, as when individuals are randomly drawn from groups that are randomly drawn from a target population. When the covariance structures in the group level and the individual level are the…
Descriptors: Evaluation Methods, Predictor Variables, Social Science Research, Behavioral Science Research