NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tabone, Christopher J.; de Belle, J. Steven – Learning & Memory, 2011
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
Descriptors: Stimuli, Conditioning, Associative Learning, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Byrne, Brian; Wadsworth, Sally; Boehme, Kristi; Talk, Andrew C.; Coventry, William L.; Olson, Richard K.; Samuelsson, Stefan; Corley, Robin – Scientific Studies of Reading, 2013
The genetic factor structure of a range of learning measures was explored in twin children, recruited in preschool and followed to Grade 2 ("N"?=?2,084). Measures of orthographic learning and word reading were included in the analyses to determine how these patterned with the learning processes. An exploratory factor analysis of the…
Descriptors: Genetics, Preschool Children, Elementary School Students, Kindergarten
Peer reviewed Peer reviewed
Direct linkDirect link
Isiegas, Carolina; Stein, Joel; Hellman, Kevin; Hannenhalli, Sridhar; Abel, Ted; Keeley, Michael B.; Wood, Marcelo A. – Learning & Memory, 2006
Classical fear conditioning requires the recognition of conditioned stimuli (CS) and the association of the CS with an aversive stimulus. We used Affymetrix oligonucleotide microarrays to characterize changes in gene expression compared to naive mice in both the amygdala and the hippocampus 30 min after classical fear conditioning and 30 min after…
Descriptors: Fear, Genetics, Stimuli, Animals