NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 75 results Save | Export
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yixing; Levy, Roy; Yel, Nedim; Schulte, Ann C. – School Effectiveness and School Improvement, 2023
Although there is recognition that there may be differential outcomes for groups of students within schools, examination of outcomes for subgroups presents challenges to researchers and policymakers. It complicates analytic procedures, particularly when the number of students per school in the subgroup is small. We explored five alternatives for…
Descriptors: Growth Models, Hierarchical Linear Modeling, School Effectiveness, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Xinya – Educational and Psychological Measurement, 2020
Bayesian structural equation modeling (BSEM) is a flexible tool for the exploration and estimation of sparse factor loading structures; that is, most cross-loading entries are zero and only a few important cross-loadings are nonzero. The current investigation was focused on the BSEM with small-variance normal distribution priors (BSEM-N) for both…
Descriptors: Factor Structure, Bayesian Statistics, Structural Equation Models, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Wagner, Richard K.; Edwards, Ashley A.; Malkowski, Antje; Schatschneider, Chris; Joyner, Rachel E.; Wood, Sarah; Zirps, Fotena A. – New Directions for Child and Adolescent Development, 2019
Despite decades of research, it has been difficult to achieve consensus on a definition of common learning disabilities such as dyslexia. This lack of consensus represents a fundamental problem for the field. Our approach to addressing this issue is to use model-based meta-analyses and Bayesian models with informative priors to combine the results…
Descriptors: Dyslexia, Learning Disabilities, Meta Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Hyemin; Dawson, Kelsie J. – Journal of Moral Education, 2022
Although some previous studies have investigated the relationship between moral foundations and moral judgment development, the methods used have not been able to fully explore the relationship. In the present study, we used Bayesian Model Averaging (BMA) in order to address the limitations in traditional regression methods that have been used…
Descriptors: Moral Values, Moral Development, Decision Making, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lúcio, Patrícia Silva; Vandekerckhove, Joachim; Polanczyk, Guilherme V.; Cogo-Moreira, Hugo – Journal of Psychoeducational Assessment, 2021
The present study compares the fit of two- and three-parameter logistic (2PL and 3PL) models of item response theory in the performance of preschool children on the Raven's Colored Progressive Matrices. The test of Raven is widely used for evaluating nonverbal intelligence of factor g. Studies comparing models with real data are scarce on the…
Descriptors: Guessing (Tests), Item Response Theory, Test Validity, Preschool Children
Peer reviewed Peer reviewed
Direct linkDirect link
Lloyd, Kevin; Sanborn, Adam; Leslie, David; Lewandowsky, Stephan – Cognitive Science, 2019
Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the…
Descriptors: Short Term Memory, Bayesian Statistics, Cognitive Ability, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Dittrich, Dino; Leenders, Roger Th. A. J.; Mulder, Joris – Sociological Methods & Research, 2019
Currently available (classical) testing procedures for the network autocorrelation can only be used for falsifying a precise null hypothesis of no network effect. Classical methods can be neither used for quantifying evidence for the null nor for testing multiple hypotheses simultaneously. This article presents flexible Bayes factor testing…
Descriptors: Correlation, Bayesian Statistics, Networks, Evaluation Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5