NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers8
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 128 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Penaloza, Roberto V.; Berends, Mark – Sociological Methods & Research, 2022
To measure "treatment" effects, social science researchers typically rely on nonexperimental data. In education, school and teacher effects on students are often measured through value-added models (VAMs) that are not fully understood. We propose a framework that relates to the education production function in its most flexible form and…
Descriptors: Data, Value Added Models, Error of Measurement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; DiStefano, Christine; Calvocoressi, Lisa; Volker, Martin – Educational and Psychological Measurement, 2022
A class of effect size indices are discussed that evaluate the degree to which two nested confirmatory factor analysis models differ from each other in terms of fit to a set of observed variables. These descriptive effect measures can be used to quantify the impact of parameter restrictions imposed in an initially considered model and are free…
Descriptors: Effect Size, Models, Measurement Techniques, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Bitna; Sohn, Wonsook – Educational and Psychological Measurement, 2022
A Monte Carlo study was conducted to compare the performance of a level-specific (LS) fit evaluation with that of a simultaneous (SI) fit evaluation in multilevel confirmatory factor analysis (MCFA) models. We extended previous studies by examining their performance under MCFA models with different factor structures across levels. In addition,…
Descriptors: Goodness of Fit, Factor Structure, Monte Carlo Methods, Factor Analysis
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2022
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units…
Descriptors: Causal Models, Statistical Inference, Computation, Evaluation Methods
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational Measurement, 2018
The value-added method of Haberman is arguably one of the most popular methods to evaluate the quality of subscores. The method is based on the classical test theory and deems a subscore to be of added value if the subscore predicts the corresponding true subscore better than does the total score. Sinharay provided an interpretation of the added…
Descriptors: Scores, Value Added Models, Raw Scores, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Nicewander, W. Alan – Educational and Psychological Measurement, 2018
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Descriptors: Error of Measurement, Correlation, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John; Stark, Stephen – Educational and Psychological Measurement, 2019
In multilevel multiple-indicator multiple-cause (MIMIC) models, covariates can interact at the within level, at the between level, or across levels. This study examines the performance of multilevel MIMIC models in estimating and detecting the interaction effect of two covariates through a simulation and provides an empirical demonstration of…
Descriptors: Hierarchical Linear Modeling, Structural Equation Models, Computation, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes; Shim, Sungok Serena – Educational and Psychological Measurement, 2018
Collection and analysis of longitudinal data is an important tool in understanding growth and development over time in a whole range of human endeavors. Ideally, researchers working in the longitudinal framework are able to collect data at more than two points in time, as this will provide them with the potential for a deeper understanding of the…
Descriptors: Comparative Analysis, Computation, Time, Change
Peer reviewed Peer reviewed
Direct linkDirect link
Perry, Thomas – Research Papers in Education, 2019
A compositional effect is when pupil attainment is associated with the characteristics of their peers, over and above their own individual characteristics. Pupils at academically selective schools, for example, tend to out-perform similar-ability pupils who are educated with mixed-ability peers. Previous methodological studies however have shown…
Descriptors: Value Added Models, Correlation, Individual Characteristics, Peer Influence
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9