Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 7 |
Descriptor
Correlation | 10 |
Error of Measurement | 10 |
Statistical Distributions | 10 |
Sample Size | 4 |
Scores | 4 |
Computation | 3 |
Predictor Variables | 3 |
Comparative Analysis | 2 |
Data Interpretation | 2 |
Factor Analysis | 2 |
Generalizability Theory | 2 |
More ▼ |
Source
Educational and Psychological… | 3 |
Advances in Physiology… | 1 |
Journal of Experimental… | 1 |
Journal of Intelligence | 1 |
Springer | 1 |
Stanford Center for Education… | 1 |
Author
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 2 |
Books | 1 |
Guides - Non-Classroom | 1 |
Education Level
Grade 4 | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
von Oertzen, Timo; Schmiedek, Florian; Voelkle, Manuel C. – Journal of Intelligence, 2020
Properties of psychological variables at the mean or variance level can differ between persons and within persons across multiple time points. For example, cross-sectional findings between persons of different ages do not necessarily reflect the development of a single person over time. Recently, there has been an increased interest in the…
Descriptors: Cognitive Ability, Individual Differences, Statistical Analysis, Factor Analysis
Reardon, Sean F.; Kalogrides, Demetra; Ho, Andrew D. – Stanford Center for Education Policy Analysis, 2017
There is no comprehensive database of U.S. district-level test scores that is comparable across states. We describe and evaluate a method for constructing such a database. First, we estimate linear, reliability-adjusted linking transformations from state test score scales to the scale of the National Assessment of Educational Progress (NAEP). We…
Descriptors: School Districts, Scores, Statistical Distributions, Database Design
Casabianca, Jodi M.; McCaffrey, Daniel F.; Gitomer, Drew H.; Bell, Courtney A.; Hamre, Bridget K.; Pianta, Robert C. – Educational and Psychological Measurement, 2013
Classroom observation of teachers is a significant part of educational measurement; measurements of teacher practice are being used in teacher evaluation systems across the country. This research investigated whether observations made live in the classroom and from video recording of the same lessons yielded similar inferences about teaching.…
Descriptors: Secondary School Mathematics, Mathematics Instruction, Classroom Observation Techniques, Algebra
Curran-Everett, Douglas – Advances in Physiology Education, 2011
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive…
Descriptors: Regression (Statistics), Statistics, Models, Correlation
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Goodwin, Laura D.; Leech, Nancy L. – Journal of Experimental Education, 2006
The authors describe and illustrate 6 factors that affect the size of a Pearson correlation: (a) the amount of variability in the data, (b) differences in the shapes of the 2 distributions, (c) lack of linearity, (d) the presence of 1 or more "outliers," (e) characteristics of the sample, and (f) measurement error. Also discussed are ways to…
Descriptors: Effect Size, Correlation, Influences, Error of Measurement

Cornwell, John M. – Educational and Psychological Measurement, 1993
A comparison is made of the power and actual alpha levels of three tests of homogeneity for independent product-moment correlation coefficients using Monte Carlo methods while selectively studying sample size and varying the number of correlation reliabilities. How robust these are in applied work is discussed. (SLD)
Descriptors: Comparative Analysis, Correlation, Error of Measurement, Monte Carlo Methods
Lambert, Richard G.; Curlette, William L. – 1995
Validity generalization meta-analysis (VG) examines the extent to which the validity of an instrument can be transported across settings. VG offers correction and summarization procedures designed in part to remove the effects of statistical artifacts on estimates of association between criterion and predictor. By employing a random effects model,…
Descriptors: Correlation, Error of Measurement, Estimation (Mathematics), Meta Analysis
Thompson, Bruce; Borrello, Gloria M. – 1987
Attitude measures frequently produce distributions of item scores that attenuate interitem correlations and thus also distort findings regarding the factor structure underlying the items. An actual data set involving 260 adult subjects' responses to 55 items on the Love Relationships Scale is employed to illustrate empirical methods for…
Descriptors: Adults, Analysis of Covariance, Attitude Measures, Correlation