Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 17 |
Descriptor
Bayesian Statistics | 18 |
Correlation | 18 |
Evaluation Methods | 18 |
Models | 6 |
Structural Equation Models | 4 |
Data Analysis | 3 |
Evidence | 3 |
Hypothesis Testing | 3 |
Student Evaluation | 3 |
Algorithms | 2 |
Classification | 2 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 15 |
Reports - Research | 11 |
Reports - Evaluative | 4 |
Reports - Descriptive | 3 |
Speeches/Meeting Papers | 2 |
Education Level
Higher Education | 2 |
Middle Schools | 2 |
Postsecondary Education | 2 |
Adult Education | 1 |
Elementary Education | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Secondary Education | 1 |
Audience
Location
Brazil | 1 |
Florida (Miami) | 1 |
Italy | 1 |
Louisiana | 1 |
Ohio (Columbus) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Liang, Xinya – Educational and Psychological Measurement, 2020
Bayesian structural equation modeling (BSEM) is a flexible tool for the exploration and estimation of sparse factor loading structures; that is, most cross-loading entries are zero and only a few important cross-loadings are nonzero. The current investigation was focused on the BSEM with small-variance normal distribution priors (BSEM-N) for both…
Descriptors: Factor Structure, Bayesian Statistics, Structural Equation Models, Goodness of Fit
Frederick J. Poole; Matthew D. Coss; Jody Clarke-Midura – Language Learning & Technology, 2025
This study explored the use of stealth assessments within a digital game to assess second language (L2) Chinese learners' reading comprehension. Log data tracking learners' in-game behaviors from a game designed for Chinese dual language immersion classrooms (Poole et al., 2022) were used to construct Bayesian Belief Networks to model reading…
Descriptors: Second Language Instruction, Second Language Learning, Reading Comprehension, Game Based Learning
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Dittrich, Dino; Leenders, Roger Th. A. J.; Mulder, Joris – Sociological Methods & Research, 2019
Currently available (classical) testing procedures for the network autocorrelation can only be used for falsifying a precise null hypothesis of no network effect. Classical methods can be neither used for quantifying evidence for the null nor for testing multiple hypotheses simultaneously. This article presents flexible Bayes factor testing…
Descriptors: Correlation, Bayesian Statistics, Networks, Evaluation Methods
Okada, Kensuke – Research Synthesis Methods, 2015
This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as "alpha of…
Descriptors: Correlation, Bayesian Statistics, Meta Analysis, Hypothesis Testing
Martori, Francesc; Cuadros, Jordi; González-Sabaté, Lucinio – International Educational Data Mining Society, 2015
Student modeling can help guide the behavior of a cognitive tutor system and provide insight to researchers on understanding how students learn. In this context, Bayesian Knowledge Tracing (BKT) is one of the most popular knowledge inference models due to its predictive accuracy, interpretability and ability to infer student knowledge. However,…
Descriptors: Bayesian Statistics, Inferences, Prediction, Accuracy
Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E. – Sociological Methods & Research, 2017
Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…
Descriptors: Bayesian Statistics, Classification, Models, Correlation
Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin – International Educational Data Mining Society, 2015
We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…
Descriptors: Middle School Students, Problem Solving, Educational Games, Bayesian Statistics
da Silva, Aleksandra do Socorro; de Brito, Silvana Rossy; Martins, Dalton Lopes; Vijaykumar, Nandamudi Lankalapalli; da Rocha, Cláudio Alex Jorge; Costa, João Crisóstomo Weyl Albuquerque; Francês, Carlos Renato Lisboa – International Journal of Distance Education Technologies, 2014
Evaluating and monitoring large-scale distance learning programs require different techniques, systems, and analysis methods. This work presents challenges in evaluating and monitoring digital inclusion training programs, considering the aspects inherent in large-scale distance training, and reports an approach based on network and distance…
Descriptors: Social Networks, Network Analysis, Distance Education, Program Evaluation
Rusconi, Patrice; Marelli, Marco; D'Addario, Marco; Russo, Selena; Cherubini, Paolo – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
Evidence evaluation is a crucial process in many human activities, spanning from medical diagnosis to impression formation. The present experiments investigated which, if any, normative model best conforms to people's intuition about the value of the obtained evidence. Psychologists, epistemologists, and philosophers of science have proposed…
Descriptors: Experimental Psychology, Models, Intuition, Evidence
Wang, Lijuan; Hamaker, Ellen; Bergeman, C. S. – Psychological Methods, 2012
Intra-individual variability over a short period of time may contain important information about how individuals differ from each other. In this article we begin by discussing diverse indicators for quantifying intra-individual variability and indicate their advantages and disadvantages. Then we propose an alternative method that models…
Descriptors: Evaluation Methods, Data Analysis, Individual Differences, Models
Jenkins, Melissa M.; Youngstrom, Eric A.; Youngstrom, Jennifer Kogos; Feeny, Norah C.; Findling, Robert L. – Psychological Assessment, 2012
Bipolar disorder is frequently clinically diagnosed in youths who do not actually satisfy Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision; DSM-IV-TR; American Psychiatric Association, 1994) criteria, yet cases that would satisfy full DSM-IV-TR criteria are often undetected clinically. Evidence-based assessment methods…
Descriptors: Evidence, Mental Health, Mental Disorders, Clinical Diagnosis
Previous Page | Next Page »
Pages: 1 | 2