Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 9 |
Descriptor
Correlation | 9 |
Hierarchical Linear Modeling | 9 |
Monte Carlo Methods | 9 |
Comparative Analysis | 5 |
Item Response Theory | 4 |
Markov Processes | 4 |
Statistical Analysis | 4 |
Computation | 3 |
Equations (Mathematics) | 3 |
Error of Measurement | 3 |
Foreign Countries | 3 |
More ▼ |
Source
Educational and Psychological… | 3 |
Journal of Experimental… | 2 |
Journal of Educational… | 1 |
Journal of Experimental… | 1 |
ProQuest LLC | 1 |
Scandinavian Journal of… | 1 |
Author
Acosta, Sandra | 1 |
Algina, James | 1 |
Aydin, Burak | 1 |
Gielen, Sarah | 1 |
He, Wei | 1 |
Hsu, Hsien-Yuan | 1 |
Huang, Francis L. | 1 |
Huang, Hung-Yu | 1 |
Jeon, Minjeong | 1 |
Jiao, Hong | 1 |
Kwok, Oi-Man | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Dissertations/Theses -… | 1 |
Education Level
Elementary Education | 1 |
Grade 4 | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Location
China (Shanghai) | 1 |
Finland | 1 |
South Korea | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Students Evaluation of… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Hsu, Hsien-Yuan; Lin, Jr-Hung; Kwok, Oi-Man; Acosta, Sandra; Willson, Victor – Educational and Psychological Measurement, 2017
Several researchers have recommended that level-specific fit indices should be applied to detect the lack of model fit at any level in multilevel structural equation models. Although we concur with their view, we note that these studies did not sufficiently consider the impact of intraclass correlation (ICC) on the performance of level-specific…
Descriptors: Correlation, Goodness of Fit, Hierarchical Linear Modeling, Structural Equation Models
Huang, Francis L. – Journal of Experimental Education, 2018
Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…
Descriptors: Hierarchical Linear Modeling, Least Squares Statistics, Regression (Statistics), Comparative Analysis
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Ning, Bo; Van Damme, Jan; Gielen, Sarah; Vanlaar, Gudrun; Van den Noortgate, Wim – Scandinavian Journal of Educational Research, 2016
Finland and Shanghai are strong performers in the Program for International Student Assessment (PISA). The current study explored the similarities and differences in educational effectiveness between these 2 strong performers. To this end, 14 predictors representing student background and school process characteristics were selected from the PISA…
Descriptors: Foreign Countries, Reading Achievement, Comparative Education, Instructional Effectiveness
Jiao, Hong; Wang, Shudong; He, Wei – Journal of Educational Measurement, 2013
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Descriptors: Computation, Item Response Theory, Models, Monte Carlo Methods
Murayama, Kou; Sakaki, Michiko; Yan, Veronica X.; Smith, Garry M. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are…
Descriptors: Metacognition, Memory, Accuracy, Statistical Analysis
Jeon, Minjeong – ProQuest LLC, 2012
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Maximum Likelihood Statistics
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability