NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 98 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Karl Schweizer; Andreas Gold; Dorothea Krampen; Stefan Troche – Educational and Psychological Measurement, 2024
Conceptualizing two-variable disturbances preventing good model fit in confirmatory factor analysis as item-level method effects instead of correlated residuals avoids violating the principle that residual variation is unique for each item. The possibility of representing such a disturbance by a method factor of a bifactor measurement model was…
Descriptors: Correlation, Factor Analysis, Measurement Techniques, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sweeney, Sandra M.; Sinharay, Sandip; Johnson, Matthew S.; Steinhauer, Eric W. – Educational Measurement: Issues and Practice, 2022
The focus of this paper is on the empirical relationship between item difficulty and item discrimination. Two studies--an empirical investigation and a simulation study--were conducted to examine the association between item difficulty and item discrimination under classical test theory and item response theory (IRT), and the effects of the…
Descriptors: Correlation, Item Response Theory, Item Analysis, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao, Yue; Veldkamp, Bernard; Liu, Hongyun – Educational Measurement: Issues and Practice, 2022
The action sequences of respondents in problem-solving tasks reflect rich and detailed information about their performance, including differences in problem-solving ability, even if item scores are equal. It is therefore not sufficient to infer individual problem-solving skills based solely on item scores. This study is a preliminary attempt to…
Descriptors: Problem Solving, Item Response Theory, Scores, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Guo, Wenjing; Choi, Youn-Jeng – Educational and Psychological Measurement, 2023
Determining the number of dimensions is extremely important in applying item response theory (IRT) models to data. Traditional and revised parallel analyses have been proposed within the factor analysis framework, and both have shown some promise in assessing dimensionality. However, their performance in the IRT framework has not been…
Descriptors: Item Response Theory, Evaluation Methods, Factor Analysis, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan M. Wheeler; Allan S. Cohen; Shiyu Wang – Journal of Educational and Behavioral Statistics, 2024
Topic models are mathematical and statistical models used to analyze textual data. The objective of topic models is to gain information about the latent semantic space of a set of related textual data. The semantic space of a set of textual data contains the relationship between documents and words and how they are used. Topic models are becoming…
Descriptors: Semantics, Educational Assessment, Evaluators, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alallo, Hajir Mahmood Ibrahim; Mohammed, Aisha; Hamid, Zayad Khalaf; Hassan, Aalaa Yaseen; Kadhim, Qasim Khlaif – International Journal of Language Testing, 2023
Diagnostic classification models (DCMs) have recently become very popular both for research purposes and for real testing endeavors for student assessment. A plethora of DCM models give researchers and practitioners a wide range of options for student diagnosis and classification. One intriguing option that some DCM models offer is the possibility…
Descriptors: Language Tests, Diagnostic Tests, Classification, Clinical Diagnosis
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Su-Pin; Huang, Hung-Yu – Journal of Educational and Behavioral Statistics, 2022
To address response style or bias in rating scales, forced-choice items are often used to request that respondents rank their attitudes or preferences among a limited set of options. The rating scales used by raters to render judgments on ratees' performance also contribute to rater bias or errors; consequently, forced-choice items have recently…
Descriptors: Evaluation Methods, Rating Scales, Item Analysis, Preferences
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Bernhardt, Amery E. – ProQuest LLC, 2022
This quantitative correlational study dives into the heart of understanding the significance of model fidelity for implementing school threat assessment teams. The target population was instructional staff and threat assessment team members from schools in Dutchess, Putnam, and Westchester Counties in New York State that use the Comprehensive…
Descriptors: Evaluation Methods, Educational Environment, Correlation, Fidelity
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baris Pekmezci, Fulya; Gulleroglu, H. Deniz – Eurasian Journal of Educational Research, 2019
Purpose: This study aims to investigate the orthogonality assumption, which restricts the use of Bifactor item response theory under different conditions. Method: Data of the study have been obtained in accordance with the Bifactor model. It has been produced in accordance with two different models (Model 1 and Model 2) in a simulated way.…
Descriptors: Item Response Theory, Accuracy, Item Analysis, Correlation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7