Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 6 |
Descriptor
Correlation | 9 |
Mathematical Formulas | 9 |
Monte Carlo Methods | 9 |
Error of Measurement | 4 |
Statistical Bias | 4 |
Simulation | 3 |
Effect Size | 2 |
Evaluation Methods | 2 |
Multiple Regression Analysis | 2 |
Sample Size | 2 |
Sampling | 2 |
More ▼ |
Source
Grantee Submission | 2 |
Educational and Psychological… | 1 |
Journal of Experimental… | 1 |
Multiple Linear Regression… | 1 |
ProQuest LLC | 1 |
Research Synthesis Methods | 1 |
Society for Research on… | 1 |
Author
Newman, Isadore | 2 |
Ben-Michael, Eli | 1 |
Cohen, Jacob | 1 |
Dong, Nianbo | 1 |
Feller, Avi | 1 |
Ke, Zijun | 1 |
Lipsey, Mark | 1 |
Nee, John C. M. | 1 |
Rothstein, Jesse | 1 |
Sanghyun Hong | 1 |
Thompson, Bruce | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Journal Articles | 4 |
Dissertations/Theses -… | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2022
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units…
Descriptors: Causal Models, Statistical Inference, Computation, Evaluation Methods
Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling Techniques
Ke, Zijun; Zhang, Zhiyong – Grantee Submission, 2018
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such…
Descriptors: Correlation, Mathematical Formulas, Sampling, Monte Carlo Methods
tran, minh – ProQuest LLC, 2011
Many research studies involving Pearson correlations are conducted in settings where one of the two variables has a restricted range in the sample. For example, this situation occurs when tests are used for selecting candidates for employment or university admission. Often after selection, there is interest in correlating the selection variable,…
Descriptors: Correlation, Robustness (Statistics), Mathematical Formulas, Monte Carlo Methods
Dong, Nianbo; Lipsey, Mark – Society for Research on Educational Effectiveness, 2010
This study uses simulation techniques to examine the statistical power of the group- randomized design and the matched-pair (MP) randomized block design under various parameter combinations. Both nearest neighbor matching and random matching are used for the MP design. The power of each design for any parameter combination was calculated from…
Descriptors: Simulation, Statistical Analysis, Cluster Grouping, Mathematical Models
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods

Cohen, Jacob; Nee, John C. M. – Educational and Psychological Measurement, 1984
Two measures of association between sets of variables have been proposed for set correlation: the proportion of generalized variance, and the proportion of additionive variance. Because these measures are strongly positively biased, approximate expected values and estimators of these measures are derived and checked. (Author/BW)
Descriptors: Correlation, Estimation (Mathematics), Mathematical Formulas, Matrices
Newman, Isadore; And Others – 1979
A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…
Descriptors: Correlation, Mathematical Formulas, Monte Carlo Methods, Multiple Regression Analysis

Newman, Isadore; And Others – Multiple Linear Regression Viewpoints, 1979
A Monte Carlo simulation was employed to determine the accuracy with which the shrinkage in R squared can be estimated by five different shrinkage formulas. The study dealt with the use of shrinkage formulas for various sample sizes, different R squared values, and different degrees of multicollinearity. (Author/JKS)
Descriptors: Computer Programs, Correlation, Goodness of Fit, Mathematical Formulas